Suppr超能文献

使用铜锡电沉积催化剂通过二氧化碳还原反应提高合成气产量

Syngas Production Improvement from CO2RR Using Cu-Sn Electrodeposited Catalysts.

作者信息

Herranz Daniel, Bernedo Biriucov Santiago, Arranz Antonio, Avilés Moreno Juan Ramón, Ocón Pilar

机构信息

Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.

Departamento de Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.

出版信息

Materials (Basel). 2024 Dec 30;18(1):105. doi: 10.3390/ma18010105.

Abstract

Electrochemical reduction of CO is an efficient and novel strategy to reduce the amount of this greenhouse-effect pollutant gas in the atmosphere while synthesizing value-added products, all of it with an easy synergy with intermittent renewable energies. This study investigates the influence of different ways of combining electrodeposited Cu and Sn as metallic elements in the electrocatalyst. From there, the use of Sn alone or with a small amount of Cu beneath is investigated, and finally, the best catalyst obtained, which has Sn over a slight Cu layer, is evaluated in consecutive cycles to make an initial exploration of the catalyst durability. As a result of this work, after optimization of the Sn and Cu-based catalysts, it is possible to obtain more than 60% of the organic products of interest, predominantly CO, the main component of syngas. Finally, this great amount of CO is obtained under low cell potential (below 3 V), which is a remarkable result in terms of the cost of the process.

摘要

电化学还原CO是一种高效且新颖的策略,可减少大气中这种温室效应污染物气体的含量,同时合成增值产品,并且所有这些都能与间歇性可再生能源轻松协同。本研究考察了将电沉积的Cu和Sn作为金属元素组合在电催化剂中的不同方式的影响。由此,研究了单独使用Sn或在其下方使用少量Cu的情况,最后,对在轻微Cu层上覆盖Sn的最佳催化剂进行连续循环评估,以初步探索催化剂的耐久性。这项工作的结果是,在优化基于Sn和Cu的催化剂后,可以获得超过60%的目标有机产物,主要是CO,即合成气的主要成分。最后,在低电池电位(低于3V)下获得了大量的CO,这在工艺成本方面是一个显著的成果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da83/11722079/eb8d8c6c8b14/materials-18-00105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验