Suppr超能文献

基于唾液酸转移酶的化学酶组织化学用于检测 N-和 O-聚糖。

Sialyltransferase-Based Chemoenzymatic Histology for the Detection of N- and O-Glycans.

机构信息

Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States.

Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States.

出版信息

Bioconjug Chem. 2018 Apr 18;29(4):1231-1239. doi: 10.1021/acs.bioconjchem.8b00021. Epub 2018 Mar 23.

Abstract

Profiling specific glycans in histopathological samples is hampered by the lack of selective and sensitive tools for their detection. Here, we report on the development of chemoenzymatic histology of membrane polysaccharide (CHoMP)-based methods for the detection of O- and N-linked glycans on tissue sections via the use of sialyltransferases ST3Gal1 and ST6Gal1, respectively. Combining these two methods, we developed tandem labeling and double labeling strategies that permit the detection of unsialylated and sialylated glycans or the detection of O- and N-linked glycans on the same tissue section, respectively. We applied these methods to screen murine tissue specimens, human multiple-organ cancer arrays, and lymphoma and prostate cancer arrays. Using tandem labeling with ST6Gal1 to analyze N-glycans in a prostate cancer array, we found striking differences in expression patterns of both sialylated and unsialylated N-glycans between cancerous and healthy samples. Such differences were also observed between normal tissue from healthy donors and healthy tissue adjacent to tumors. Our double labeling technique identified significant differences in unsialylated O-glycans between B-cell and T-cell lymphomas and between B-cell lymphomas and normal adjacent lymph nodes. Remarkable differences were also detected between adjacent lymph nodes and spleen tissue samples. These new chemoenzymatic histology methods therefore provide valuable tools for the analysis of glycans in clinically relevant tissue samples.

摘要

在组织切片中对特定糖进行分析受到缺乏选择性和敏感工具的限制。在这里,我们报告了基于化学酶组织化学的膜多糖(CHoMP)方法的发展,用于通过使用唾液酸转移酶 ST3Gal1 和 ST6Gal1 分别检测组织切片上的 O-和 N-连接聚糖。通过结合这两种方法,我们开发了串联标记和双重标记策略,分别允许检测未唾液酸化和唾液酸化的聚糖或检测同一组织切片上的 O-和 N-连接聚糖。我们将这些方法应用于筛选鼠组织标本、人多器官癌阵列以及淋巴瘤和前列腺癌阵列。使用 ST6Gal1 进行串联标记来分析前列腺癌阵列中的 N-聚糖,我们发现癌症和健康样本之间的唾液酸化和非唾液酸化 N-聚糖的表达模式存在显著差异。在来自健康供体的正常组织和肿瘤附近的正常组织之间也观察到了这种差异。我们的双重标记技术在 B 细胞和 T 细胞淋巴瘤以及 B 细胞淋巴瘤和正常相邻淋巴结之间鉴定出未唾液酸化 O-聚糖存在显著差异。在相邻淋巴结和脾脏组织样本之间也检测到了显著差异。因此,这些新的化学酶组织化学方法为分析临床相关组织样本中的聚糖提供了有价值的工具。

相似文献

1
Sialyltransferase-Based Chemoenzymatic Histology for the Detection of N- and O-Glycans.
Bioconjug Chem. 2018 Apr 18;29(4):1231-1239. doi: 10.1021/acs.bioconjchem.8b00021. Epub 2018 Mar 23.
2
ST6GAL1-mediated aberrant sialylation promotes prostate cancer progression.
J Pathol. 2023 Sep;261(1):71-84. doi: 10.1002/path.6152. Epub 2023 Aug 7.
5
Selective Exo-Enzymatic Labeling Detects Increased Cell Surface Sialoglycoprotein Expression upon Megakaryocytic Differentiation.
J Biol Chem. 2016 Feb 19;291(8):3982-9. doi: 10.1074/jbc.M115.700369. Epub 2016 Jan 5.
6
Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides.
J Am Chem Soc. 2002 May 22;124(20):5739-46. doi: 10.1021/ja017881+.
7
Human B Cell Differentiation Is Characterized by Progressive Remodeling of O-Linked Glycans.
Front Immunol. 2018 Dec 14;9:2857. doi: 10.3389/fimmu.2018.02857. eCollection 2018.
8
Direct fluorescent glycan labeling with recombinant sialyltransferases.
Glycobiology. 2019 Oct 21;29(11):750-754. doi: 10.1093/glycob/cwz058.
9
A Chemoenzymatic Histology Method for O-GlcNAc Detection.
Chembiochem. 2017 Dec 14;18(24):2416-2421. doi: 10.1002/cbic.201700515. Epub 2017 Dec 5.

引用本文的文献

1
Unique Glycans in Synaptic Glycoproteins in Mouse Brain.
ACS Chem Neurosci. 2024 Nov 6;15(21):4033-4045. doi: 10.1021/acschemneuro.4c00399. Epub 2024 Oct 14.
2
In Situ Glycan Analysis and Editing in Living Systems.
JACS Au. 2024 Jan 17;4(2):384-401. doi: 10.1021/jacsau.3c00717. eCollection 2024 Feb 26.
3
Site-specific dual encoding and labeling of proteins via genetic code expansion.
Cell Chem Biol. 2023 Apr 20;30(4):343-361. doi: 10.1016/j.chembiol.2023.03.004. Epub 2023 Mar 27.
4
Biocatalysis versus Molecular Recognition in Sialoside-Selective Neuraminidase Biosensing.
ACS Chem Biol. 2023 Mar 17;18(3):605-614. doi: 10.1021/acschembio.2c00913. Epub 2023 Feb 15.
5
Recombinant mucin biotechnology and engineering.
Adv Drug Deliv Rev. 2023 Feb;193:114618. doi: 10.1016/j.addr.2022.114618. Epub 2022 Nov 11.
6
Glycome Profiling of Cancer Cell Lines Cultivated in Physiological and Commercial Media.
Biomolecules. 2022 May 24;12(6):743. doi: 10.3390/biom12060743.
7
Exo-Enzymatic Addition of Diazirine-Modified Sialic Acid to Cell Surfaces Enables Photocrosslinking of Glycoproteins.
Bioconjug Chem. 2022 May 18;33(5):781-787. doi: 10.1021/acs.bioconjchem.2c00037. Epub 2022 Apr 19.
8
Chemical reporters to study mammalian O-glycosylation.
Biochem Soc Trans. 2021 Apr 30;49(2):903-913. doi: 10.1042/BST20200839.
10
A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics.
Mol Cell Proteomics. 2021;20:100029. doi: 10.1074/mcp.R120.002277. Epub 2020 Dec 20.

本文引用的文献

1
Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics.
Angew Chem Int Ed Engl. 2017 Jul 24;56(31):8992-8997. doi: 10.1002/anie.201701424. Epub 2017 Jun 26.
2
T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy.
Lab Invest. 2017 Jun;97(6):669-697. doi: 10.1038/labinvest.2017.25. Epub 2017 Mar 27.
3
One-Step Selective Exoenzymatic Labeling (SEEL) Strategy for the Biotinylation and Identification of Glycoproteins of Living Cells.
J Am Chem Soc. 2016 Sep 14;138(36):11575-11582. doi: 10.1021/jacs.6b04049. Epub 2016 Sep 1.
4
Selective Exo-Enzymatic Labeling Detects Increased Cell Surface Sialoglycoprotein Expression upon Megakaryocytic Differentiation.
J Biol Chem. 2016 Feb 19;291(8):3982-9. doi: 10.1074/jbc.M115.700369. Epub 2016 Jan 5.
5
Sialic acids in cancer biology and immunity.
Glycobiology. 2016 Feb;26(2):111-28. doi: 10.1093/glycob/cwv097. Epub 2015 Oct 30.
6
Differential N-Glycosylation Patterns in Lung Adenocarcinoma Tissue.
J Proteome Res. 2015 Nov 6;14(11):4538-49. doi: 10.1021/acs.jproteome.5b00255. Epub 2015 Sep 30.
7
Glycosylation in cancer: mechanisms and clinical implications.
Nat Rev Cancer. 2015 Sep;15(9):540-55. doi: 10.1038/nrc3982. Epub 2015 Aug 20.
8
Cancer biomarker discovery and validation.
Transl Cancer Res. 2015 Jun;4(3):256-269. doi: 10.3978/j.issn.2218-676X.2015.06.04.
9
CHoMP: a chemoenzymatic histology method using clickable probes.
Chembiochem. 2014 Dec 15;15(18):2667-73. doi: 10.1002/cbic.201402433. Epub 2014 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验