Suppr超能文献

在动力学模型中选择敏感参数子集及其在生物力学系统识别中的应用

Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

作者信息

Ramadan Ahmed, Boss Connor, Choi Jongeun, Peter Reeves N, Cholewicki Jacek, Popovich John M, Radcliffe Clark J

机构信息

Mem. ASME Department of Mechanical Engineering, MSU Center for Orthopedic Research (MSUCOR), Michigan State University, 428 S. Shaw Ln, East Lansing, MI 48824 e-mail: .

Mem. ASME Department of Electrical and Computer Engineering, MSU Center for Orthopedic Research (MSUCOR), Michigan State University, East Lansing, MI 48824 e-mail: .

出版信息

J Biomech Eng. 2018 Jul 1;140(7):0745031-8. doi: 10.1115/1.4039677.

Abstract

Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

摘要

利用有限数据估计生物力学系统的许多参数可能会实现良好的拟合,但也可能会增加参数估计中的95%置信区间。这导致估计问题中的可识别性较差。因此,我们提出了一种新颖的方法来选择应估计的敏感生物力学模型参数,同时将其余参数固定为从初步估计中获得的值。我们的方法依赖于识别测量输出对其最敏感的参数。所提出的方法基于费舍尔信息矩阵(FIM)。将其与非线性最小绝对收缩和选择算子(LASSO)方法进行比较,以指导建模人员了解我们的FIM方法的优缺点。我们展示了一个应用,用于识别十名人类受试者头部位置跟踪任务的生物力学参数模型。使用测量数据,我们的方法(1)通过仅要求估计十二个参数中的五个来降低模型复杂性,(2)将参数95%置信区间显著降低多达原始置信区间的89%,(3)将用解释方差(VAF)衡量的拟合优度保持在82%,(4)减少了计算时间,我们的FIM方法比LASSO方法快164倍,并且(5)选择了与LASSO方法类似的敏感参数,其中FIM和LASSO方法共有的五个选定敏感参数中有三个。

相似文献

2
Feasibility of Incorporating Test-Retest Reliability and Model Diversity in Identification of Key Neuromuscular Pathways During Head Position Tracking.
IEEE Trans Neural Syst Rehabil Eng. 2019 Feb;27(2):275-282. doi: 10.1109/TNSRE.2019.2891525. Epub 2019 Jan 10.
4
On the selection of ordinary differential equation models with application to predator-prey dynamical models.
Biometrics. 2015 Mar;71(1):131-138. doi: 10.1111/biom.12243. Epub 2014 Oct 6.
7
Measurement error correction in the least absolute shrinkage and selection operator model when validation data are available.
Stat Methods Med Res. 2019 Mar;28(3):670-680. doi: 10.1177/0962280217734241. Epub 2017 Nov 23.
8
Variable selection for multiply-imputed data with application to dioxin exposure study.
Stat Med. 2013 Sep 20;32(21):3646-59. doi: 10.1002/sim.5783. Epub 2013 Mar 25.
9
Nonparametric estimation of Fisher information from real data.
Phys Rev E. 2016 Feb;93(2):023301. doi: 10.1103/PhysRevE.93.023301. Epub 2016 Feb 8.
10
Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
J Neural Eng. 2014 Oct;11(5):056008. doi: 10.1088/1741-2560/11/5/056008. Epub 2014 Aug 1.

引用本文的文献

本文引用的文献

1
Time-Domain Optimal Experimental Design in Human Seated Postural Control Testing.
J Dyn Syst Meas Control. 2015 May;137(5):0545011-545017. doi: 10.1115/1.4028850.
2
Quantitative measures of sagittal plane head-neck control: a test-retest reliability study.
J Biomech. 2015 Feb 5;48(3):549-54. doi: 10.1016/j.jbiomech.2014.11.023. Epub 2014 Nov 27.
3
A passive movement method for parameter estimation of a musculo-skeletal arm model incorporating a modified hill muscle model.
Comput Methods Programs Biomed. 2014 May;114(3):e46-59. doi: 10.1016/j.cmpb.2013.11.003. Epub 2013 Nov 15.
4
Statistical method for prediction of gait kinematics with Gaussian process regression.
J Biomech. 2014 Jan 3;47(1):186-92. doi: 10.1016/j.jbiomech.2013.09.032. Epub 2013 Oct 24.
5
Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake.
Comput Methods Programs Biomed. 2014 May;114(3):e60-9. doi: 10.1016/j.cmpb.2013.06.013. Epub 2013 Jul 17.
6
Identifying intrinsic and reflexive contributions to low-back stabilization.
J Biomech. 2013 May 31;46(8):1440-6. doi: 10.1016/j.jbiomech.2013.03.007. Epub 2013 Apr 9.
7
Dependency of human neck reflex responses on the bandwidth of pseudorandom anterior-posterior torso perturbations.
Exp Brain Res. 2013 Apr;226(1):1-14. doi: 10.1007/s00221-012-3388-x. Epub 2013 Jan 18.
8
Assessing manual pursuit tracking in Parkinson's disease via linear dynamical systems.
Ann Biomed Eng. 2011 Aug;39(8):2263-73. doi: 10.1007/s10439-011-0306-5. Epub 2011 Apr 6.
9
Contribution of sensorimotor integration to spinal stabilization in humans.
J Neurophysiol. 2009 Jul;102(1):496-512. doi: 10.1152/jn.00118.2009. Epub 2009 Apr 29.
10
On parameter estimation for biaxial mechanical behavior of arteries.
J Biomech. 2009 Mar 11;42(4):524-30. doi: 10.1016/j.jbiomech.2008.11.022. Epub 2009 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验