Suppr超能文献

基于大人群数据的骨质疏松风险筛查和个体化特征分析的可解释深度学习方法:模型开发和性能评估。

Interpretable Deep-Learning Approaches for Osteoporosis Risk Screening and Individualized Feature Analysis Using Large Population-Based Data: Model Development and Performance Evaluation.

机构信息

School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea.

Department of Family Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea.

出版信息

J Med Internet Res. 2023 Jan 13;25:e40179. doi: 10.2196/40179.

Abstract

BACKGROUND

Osteoporosis is one of the diseases that requires early screening and detection for its management. Common clinical tools and machine-learning (ML) models for screening osteoporosis have been developed, but they show limitations such as low accuracy. Moreover, these methods are confined to limited risk factors and lack individualized explanation.

OBJECTIVE

The aim of this study was to develop an interpretable deep-learning (DL) model for osteoporosis risk screening with clinical features. Clinical interpretation with individual explanations of feature contributions is provided using an explainable artificial intelligence (XAI) technique.

METHODS

We used two separate data sets: the National Health and Nutrition Examination Survey data sets from the United States (NHANES) and South Korea (KNHANES) with 8274 and 8680 respondents, respectively. The study population was classified according to the T-score of bone mineral density at the femoral neck or total femur. A DL model for osteoporosis diagnosis was trained on the data sets and significant risk factors were investigated with local interpretable model-agnostic explanations (LIME). The performance of the DL model was compared with that of ML models and conventional clinical tools. Additionally, contribution ranking of risk factors and individualized explanation of feature contribution were examined.

RESULTS

Our DL model showed area under the curve (AUC) values of 0.851 (95% CI 0.844-0.858) and 0.922 (95% CI 0.916-0.928) for the femoral neck and total femur bone mineral density, respectively, using the NHANES data set. The corresponding AUC values for the KNHANES data set were 0.827 (95% CI 0.821-0.833) and 0.912 (95% CI 0.898-0.927), respectively. Through the LIME method, significant features were induced, and each feature's integrated contribution and interpretation for individual risk were determined.

CONCLUSIONS

The developed DL model significantly outperforms conventional ML models and clinical tools. Our XAI model produces high-ranked features along with the integrated contributions of each feature, which facilitates the interpretation of individual risk. In summary, our interpretable model for osteoporosis risk screening outperformed state-of-the-art methods.

摘要

背景

骨质疏松症是一种需要早期筛查和检测的疾病。已经开发出了用于骨质疏松症筛查的常见临床工具和机器学习 (ML) 模型,但它们存在准确性低等局限性。此外,这些方法仅限于有限的风险因素,缺乏个性化解释。

目的

本研究旨在开发一种基于临床特征的可解释深度学习 (DL) 模型,用于骨质疏松症风险筛查。使用解释性人工智能 (XAI) 技术提供对特征贡献的个体解释的临床解释。

方法

我们使用了两个独立的数据集:来自美国 (NHANES) 和韩国 (KNHANES) 的国家健康和营养检查调查数据,分别有 8274 和 8680 名受访者。根据股骨颈或总股骨骨密度 T 评分对研究人群进行分类。在数据集上训练用于骨质疏松症诊断的 DL 模型,并使用局部可解释模型不可知解释 (LIME) 研究显著的风险因素。比较 DL 模型与 ML 模型和传统临床工具的性能。此外,还检查了风险因素的排名和特征贡献的个体化解释。

结果

我们的 DL 模型在使用 NHANES 数据集时,股骨颈和总股骨骨密度的曲线下面积 (AUC) 值分别为 0.851(95%CI 0.844-0.858)和 0.922(95%CI 0.916-0.928)。对于 KNHANES 数据集,相应的 AUC 值分别为 0.827(95%CI 0.821-0.833)和 0.912(95%CI 0.898-0.927)。通过 LIME 方法,可以得出显著特征,并确定每个特征的个体风险的综合贡献和解释。

结论

开发的 DL 模型明显优于传统的 ML 模型和临床工具。我们的 XAI 模型生成了高排名的特征以及每个特征的综合贡献,有助于解释个体风险。总之,我们的骨质疏松症风险筛查可解释模型优于最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1916/9883743/2f68c276f59b/jmir_v25i1e40179_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验