Department of Biology, Emory University, Atlanta, GA, USA.
Department of Biology, Emory University, Atlanta, GA, USA.
J Theor Biol. 2018 Jun 14;447:56-64. doi: 10.1016/j.jtbi.2018.03.022. Epub 2018 Mar 21.
One important feature of the mammalian immune system is the highly specific binding of antigens to antibodies. Antibodies generated in response to one infection may also provide some level of cross immunity to other infections. One model to describe this cross immunity is the notion of antigenic space, which assigns each antibody and each virus a point in R. Past studies using hemagglutination data have suggested the dimensionality of antigenic space, n, is low. We propose that influenza evolution may be modeled as a Gaussian random walk. We then show that hemagluttination data would be consistent with a walk in very high dimensions. The discrepancy between our result and prior studies is due to the fact that random walks can appear low dimensional according to a variety of analyses including principal component analysis (PCA) and multidimensional scaling (MDS). A high dimensionality of antigenic space is of importance to modelers, as it suggests a smaller role for pre-existing immunity within the host population.
哺乳动物免疫系统的一个重要特征是抗原与抗体的高度特异性结合。针对一种感染产生的抗体也可能为其他感染提供一定程度的交叉免疫。描述这种交叉免疫的一个模型是抗原空间的概念,它将每个抗体和每个病毒都分配到 R 中的一个点上。过去使用血凝数据的研究表明,抗原空间的维度 n 较低。我们提出流感的进化可以模拟为高斯随机游走。然后我们表明,血凝数据将与非常高维的游走一致。我们的结果与先前研究的差异是由于随机游走可以根据各种分析(包括主成分分析(PCA)和多维标度(MDS))呈现出低维的事实。抗原空间的高维度对于建模者很重要,因为它表明宿主群体中预先存在的免疫作用较小。