Suppr超能文献

考虑干扰历史在模型中的作用:利用遥感技术来约束碳氮库的启动。

Accounting for disturbance history in models: using remote sensing to constrain carbon and nitrogen pool spin-up.

机构信息

Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, 99164, USA.

Department of Environmental Science, Policy and Management, University of California Santa Barbara, Santa Barbara, California, 93106, USA.

出版信息

Ecol Appl. 2018 Jul;28(5):1197-1214. doi: 10.1002/eap.1718. Epub 2018 Apr 26.

Abstract

Disturbances such as wildfire, insect outbreaks, and forest clearing, play an important role in regulating carbon, nitrogen, and hydrologic fluxes in terrestrial watersheds. Evaluating how watersheds respond to disturbance requires understanding mechanisms that interact over multiple spatial and temporal scales. Simulation modeling is a powerful tool for bridging these scales; however, model projections are limited by uncertainties in the initial state of plant carbon and nitrogen stores. Watershed models typically use one of two methods to initialize these stores: spin-up to steady state or remote sensing with allometric relationships. Spin-up involves running a model until vegetation reaches equilibrium based on climate. This approach assumes that vegetation across the watershed has reached maturity and is of uniform age, which fails to account for landscape heterogeneity and non-steady-state conditions. By contrast, remote sensing, can provide data for initializing such conditions. However, methods for assimilating remote sensing into model simulations can also be problematic. They often rely on empirical allometric relationships between a single vegetation variable and modeled carbon and nitrogen stores. Because allometric relationships are species- and region-specific, they do not account for the effects of local resource limitation, which can influence carbon allocation (to leaves, stems, roots, etc.). To address this problem, we developed a new initialization approach using the catchment-scale ecohydrologic model RHESSys. The new approach merges the mechanistic stability of spin-up with the spatial fidelity of remote sensing. It uses remote sensing to define spatially explicit targets for one or several vegetation state variables, such as leaf area index, across a watershed. The model then simulates the growth of carbon and nitrogen stores until the defined targets are met for all locations. We evaluated this approach in a mixed pine-dominated watershed in central Idaho, and a chaparral-dominated watershed in southern California. In the pine-dominated watershed, model estimates of carbon, nitrogen, and water fluxes varied among methods, while the target-driven method increased correspondence between observed and modeled streamflow. In the chaparral watershed, where vegetation was more homogeneously aged, there were no major differences among methods. Thus, in heterogeneous, disturbance-prone watersheds, the target-driven approach shows potential for improving biogeochemical projections.

摘要

野火、虫害和森林砍伐等干扰因素在调节陆地流域的碳、氮和水文通量方面起着重要作用。评估流域对干扰的响应需要了解在多个时空尺度上相互作用的机制。模拟建模是连接这些尺度的有力工具;然而,模型预测受到植物碳和氮储量初始状态不确定性的限制。流域模型通常使用以下两种方法之一来初始化这些储量:达到稳定状态的自旋或使用种间关系的遥感。自旋涉及根据气候运行模型,直到植被达到平衡。这种方法假设流域内的植被已经成熟且年龄均匀,这不能解释景观异质性和非稳态条件。相比之下,遥感可以提供初始化此类条件的数据。然而,将遥感数据同化到模型模拟中的方法也可能存在问题。它们通常依赖于单一植被变量与模型碳和氮储量之间的经验种间关系。由于种间关系是特定于物种和地区的,因此它们不能解释局部资源限制的影响,而资源限制会影响碳分配(到叶片、茎、根等)。为了解决这个问题,我们使用流域尺度生态水文学模型 RHESSys 开发了一种新的初始化方法。新方法将自旋的机制稳定性与遥感的空间保真度相结合。它使用遥感来定义流域内一个或多个植被状态变量(例如叶面积指数)的空间明确目标。然后,模型模拟碳和氮储量的增长,直到所有位置都达到定义的目标。我们在爱达荷州中部的一个以松为主的混合流域和加利福尼亚州南部的一个以矮灌丛为主的流域中评估了这种方法。在以松为主的流域中,模型对碳、氮和水通量的估计因方法而异,而目标驱动的方法增加了观测到的和模拟到的径流量之间的一致性。在以矮灌丛为主的流域中,植被年龄更加均匀,因此方法之间没有太大差异。因此,在异质、易受干扰的流域中,目标驱动的方法有可能改善生物地球化学预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验