Suppr超能文献

确定初级保健患者腰背相关腿痛的一年轨迹:前瞻性队列研究的增长混合模型。

Determining One-Year Trajectories of Low-Back-Related Leg Pain in Primary Care Patients: Growth Mixture Modeling of a Prospective Cohort Study.

机构信息

Arthritis Research UK Primary Care Centre, Keele University, Keele, and School of Medicine, University of Nottingham, Nottingham, UK.

Arthritis Research UK Primary Care Centre, Keele University, Keele, UK.

出版信息

Arthritis Care Res (Hoboken). 2018 Dec;70(12):1840-1848. doi: 10.1002/acr.23556. Epub 2018 Nov 8.

Abstract

OBJECTIVE

The clinical presentation and outcome of patients with back and leg pain in primary care are heterogeneous and may be better understood by identification of homogeneous and clinically meaningful subgroups. Subgroups of patients with different back pain trajectories have been identified, but little is known about the trajectories for patients with back-related leg pain. This study sought to identify distinct leg pain trajectories, and baseline characteristics associated with membership of each group, in primary care patients.

METHODS

Monthly data on leg pain intensity were collected over 12 months for 609 patients participating in a prospective cohort study of adult patients seeking health care for low-back and leg pain, including sciatica, of any duration and severity, from their general practitioner. Growth mixture modeling was used to identify clusters of patients with distinct leg pain trajectories. Trajectories were characterized using baseline demographic and clinical examination data. Multinomial logistic regression was used to predict latent class membership, with a range of covariates.

RESULTS

Four patient clusters were identified: improving mild pain (58%), persistent moderate pain (26%), persistent severe pain (13%), and improving severe pain (3%). Clusters showed statistically significant differences in a number of baseline characteristics.

CONCLUSION

Four trajectories of leg pain were identified. Clusters 1, 2, and 3 were generally comparable to back pain trajectories, while cluster 4, with major improvement in pain, is infrequently identified. Awareness of such distinct patient groups improves understanding of the course of leg pain and may provide a basis of classification for intervention.

摘要

目的

初级保健中腰背和腿部疼痛患者的临床表现和结局存在异质性,通过识别同质且具有临床意义的亚组,可以更好地理解这些患者。已经确定了具有不同腰背疼痛轨迹的患者亚组,但对于与腰背相关的腿部疼痛患者的轨迹知之甚少。本研究旨在确定原发性保健患者中具有不同腿部疼痛轨迹的亚组,以及与每个组相关的基线特征。

方法

609 名参与前瞻性队列研究的患者在 12 个月内每月收集腿部疼痛强度数据,这些患者来自他们的全科医生,因任何持续时间和严重程度的腰背和腿部疼痛(包括坐骨神经痛)而寻求医疗保健。使用增长混合物模型来识别具有不同腿部疼痛轨迹的患者亚组。使用基线人口统计学和临床检查数据来描述轨迹。使用多项逻辑回归来预测潜在类别的成员资格,并使用一系列协变量。

结果

确定了四个患者亚组:疼痛逐渐减轻的轻度疼痛(58%)、持续的中度疼痛(26%)、持续的重度疼痛(13%)和疼痛逐渐减轻的重度疼痛(3%)。在许多基线特征方面,各亚组之间存在统计学上的显著差异。

结论

确定了四种腿部疼痛轨迹。亚组 1、2 和 3 通常与腰背疼痛轨迹相似,而亚组 4 疼痛有明显改善,发生率较低。了解这些不同的患者群体可以更好地理解腿部疼痛的过程,并可能为干预提供分类依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验