Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing Proteome Research Center, Beijing 102206, China; Joint Center for Translational Medicine, Tianjin, Baodi Hospital, Tianjin 301800, China.
EBioMedicine. 2018 Apr;30:120-128. doi: 10.1016/j.ebiom.2018.03.009. Epub 2018 Mar 17.
Development of noninvasive, reliable biomarkers for lung cancer diagnosis has many clinical benefits knowing that most of lung cancer patients are diagnosed at the late stage. For this purpose, we conducted proteomic analyses of 231 human urine samples in healthy individuals (n=33), benign pulmonary diseases (n=40), lung cancer (n=33), bladder cancer (n=17), cervical cancer (n=25), colorectal cancer (n=22), esophageal cancer (n=14), and gastric cancer (n=47) patients collected from multiple medical centers. By random forest modeling, we nominated a list of urine proteins that could separate lung cancers from other cases. With a feature selection algorithm, we selected a panel of five urinary biomarkers (FTL: Ferritin light chain; MAPK1IP1L: Mitogen-Activated Protein Kinase 1 Interacting Protein 1 Like; FGB: Fibrinogen Beta Chain; RAB33B: RAB33B, Member RAS Oncogene Family; RAB15: RAB15, Member RAS Oncogene Family) and established a combinatorial model that can correctly classify the majority of lung cancer cases both in the training set (n=46) and the test sets (n=14-47 per set) with an AUC ranging from 0.8747 to 0.9853. A combination of five urinary biomarkers not only discriminates lung cancer patients from control groups but also differentiates lung cancer from other common tumors. The biomarker panel and the predictive model, when validated by more samples in a multi-center setting, may be used as an auxiliary diagnostic tool along with imaging technology for lung cancer detection.
为了实现这一目标,我们对来自多个医疗中心的 231 个人的尿液样本进行了蛋白质组学分析,其中包括健康个体(n=33)、良性肺部疾病患者(n=40)、肺癌患者(n=33)、膀胱癌患者(n=17)、宫颈癌患者(n=25)、结直肠癌患者(n=22)、食管癌患者(n=14)和胃癌患者(n=47)。通过随机森林建模,我们确定了一组能够区分肺癌与其他病例的尿液蛋白。通过特征选择算法,我们选择了一个由五种尿液生物标志物组成的标志物组合(FTL:铁蛋白轻链;MAPK1IP1L:丝裂原活化蛋白激酶 1 相互作用蛋白 1 样;FGB:纤维蛋白原β链;RAB33B:RAB33B,RAS 癌基因家族成员;RAB15:RAB15,RAS 癌基因家族成员),并建立了一个组合模型,可以正确分类大多数肺癌病例,无论是在训练集(n=46)还是在测试集(每组 n=14-47)中,AUC 范围从 0.8747 到 0.9853。五种尿液生物标志物的组合不仅可以区分肺癌患者和对照组,还可以区分肺癌与其他常见肿瘤。该生物标志物组合和预测模型,如果在多中心环境中用更多的样本进行验证,可能会与成像技术一起作为辅助诊断工具用于肺癌检测。