Suppr超能文献

Pt、Zn 和 ZnPt 纳米催化剂的 CO 氧化活性:原位近常压 X 射线光电子能谱研究。

CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy.

机构信息

Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, 4 place Jussieu, 75005 Paris, France.

出版信息

Nanoscale. 2018 Apr 5;10(14):6566-6580. doi: 10.1039/c7nr07981h.

Abstract

The investigation of nanocatalysts under ambient pressure by X-ray photoelectron spectroscopy gives access to a wealth of information on their chemical state under reaction conditions. Considering the paradigmatic CO oxidation reaction, a strong synergistic effect on CO catalytic oxidation was recently observed on a partly dewetted ZnO(0001)/Pt(111) single crystal surface. In order to bridge the material gap, we have examined whether this inverse metal/oxide catalytic effect could be transposed on supported ZnPt nanocatalysts deposited on rutile TiO2(110). Synchrotron radiation near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) operated at 1 mbar of O2 : CO mixture (4 : 1) was used at a temperature range between room temperature and 450 K. To tackle the complexity of the problem, we have also studied the catalytic activity of nanoparticles (NPs) of the same size, consisting of pure Pt and Zn nanoparticles (NPs), for which, moreover, NAP-XPS studies are a novelty. The comparative approach shows that the CO oxidation process is markedly different for the pure Pt and pure Zn NPs. For pure Pt NPs, CO poisoned the metallic surfaces at low temperature at the onset of CO2 evolution. In contrast, the pure Zn NPs first oxidize into ZnO, and trap carbonates at low temperature. Then they start to release CO2 in the gas phase, at a critical temperature, while continuously producing it. The pure Zn NPs are also immune to support encapsulation. The bimetallic nanoparticle borrows some of its characteristics from its two parent metals. In fact, the ZnPt NP, although produced by the sequential deposition of platinum and zinc, is platinum-terminated below the temperature onset of CO oxidation and poisoned by CO. Above the CO oxidation onset, the nanoparticle becomes Zn-rich with a ZnO shell. Pure Pt and ZnPt NPs present a very similar activity towards CO oxidation, in contrast with what is reported in a single crystal study. The present study demonstrates the effectiveness of NAP-XPS in the study of complex catalytic processes at work on nanocatalysts under near-ambient pressures, and highlights once more the difficulty of transposing single crystal surface observations to the case of nanoobjects.

摘要

通过 X 射线光电子能谱在环境压力下研究纳米催化剂,可以获得有关其在反应条件下化学状态的大量信息。考虑到 CO 氧化反应的典范性,最近在部分去湿的 ZnO(0001)/Pt(111)单晶表面上观察到对 CO 催化氧化的强烈协同效应。为了弥合材料间隙,我们研究了这种反金属/氧化物催化效应是否可以转移到沉积在金红石 TiO2(110)上的负载 ZnPt 纳米催化剂上。在室温至 450 K 的温度范围内,使用在 1 mbar O2:CO 混合物(4:1)下操作的同步辐射近环境压力 X 射线光电子能谱(NAP-XPS)进行研究。为了解决问题的复杂性,我们还研究了具有相同尺寸的纯 Pt 和 Zn 纳米颗粒(NPs)的纳米颗粒(NPs)的催化活性,此外,NAP-XPS 研究是一个新颖的课题。比较方法表明,对于纯 Pt 和纯 Zn NPs,CO 氧化过程明显不同。对于纯 Pt NPs,在 CO2 演化开始时,CO 在低温下使金属表面中毒。相比之下,纯 Zn NPs 首先氧化成 ZnO,并在低温下捕获碳酸盐。然后,它们在临界温度下开始在气相中释放 CO2,同时连续产生 CO2。纯 Zn NPs 也不受载体封装的影响。双金属纳米颗粒从其两个母体金属中借用了一些特性。实际上,ZnPt NP 虽然是通过铂和锌的顺序沉积产生的,但在 CO 氧化起始温度以下是铂端终止的,并被 CO 中毒。在 CO 氧化起始温度以上,纳米颗粒变得富含 Zn,形成 ZnO 壳。纯 Pt 和 ZnPt NPs 对 CO 氧化具有非常相似的活性,与单晶研究中报道的情况形成对比。本研究证明了 NAP-XPS 在研究纳米催化剂在环境压力下工作的复杂催化过程中的有效性,并再次强调了将单晶表面观察结果转移到纳米物体情况的困难。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验