Suppr超能文献

两步马尔可夫过程方法用于中低收入国家癌症状态转移模型的参数化。

A Two-Step Markov Processes Approach for Parameterization of Cancer State-Transition Models for Low- and Middle-Income Countries.

机构信息

University of Massachusetts Amherst, Amherst, MA, USA.

Avenir Health, Glastonbury, CT, USA.

出版信息

Med Decis Making. 2018 May;38(4):520-530. doi: 10.1177/0272989X18759482. Epub 2018 Mar 24.

Abstract

Implementation of organized cancer screening and prevention programs in high-income countries (HICs) has considerably decreased cancer-related incidence and mortality. In low- and middle-income countries (LMICs), screening and early diagnosis programs are generally unavailable, and most cancers are diagnosed in late stages when survival is very low. Analyzing the cost-effectiveness of alternative cancer control programs and estimating resource needs will help prioritize interventions in LMICs. However, mathematical models of natural cancer onset and progression needed to conduct the economic analyses are predominantly based on populations in HICs because the longitudinal data on screening and diagnoses required for parameterization are unavailable in LMICs. Models currently used for LMICs mostly concentrate on directly calculating the shift in distribution of cancer diagnosis as an evaluative measure of screening. We present a mathematical methodology for the parameterization of natural cancer onset and progression, specifically for LMICs that do not have longitudinal data. This full onset and progression model can help conduct comprehensive analyses of cancer control programs, including cancer screening, by considering both the positive impact of screening as well as any adverse consequences, such as over-diagnosis and false-positive results. The methodology has been applied to breast, cervical, and colorectal cancers for 2 regions, under the World Health Organization categorization: Eastern Sub-Saharan Africa (AFRE) and Southeast Asia (SEARB). The cancer models have been incorporated into the Spectrum software and interfaced with country-specific demographic data through the demographic projections (DemProj) module and costing data through the OneHealth tool. These software are open-access and can be used by stakeholders to analyze screening strategies specific to their country of interest.

摘要

在高收入国家(HICs)实施有组织的癌症筛查和预防计划已经显著降低了癌症相关的发病率和死亡率。在中低收入国家(LMICs),筛查和早期诊断计划通常不可用,大多数癌症在生存机会非常低的晚期被诊断出来。分析替代癌症控制计划的成本效益并估计资源需求将有助于确定中低收入国家的干预措施的优先级。然而,进行经济分析所需的替代癌症控制计划的数学模型主要基于 HICs 人群,因为用于参数化的筛查和诊断的纵向数据在 LMICs 中不可用。目前用于 LMICs 的模型主要集中于直接计算癌症诊断分布的变化,作为筛查的评估措施。我们提出了一种用于参数化自然癌症发生和进展的数学方法,特别是对于没有纵向数据的 LMICs。这种完整的发生和进展模型可以通过考虑筛查的积极影响以及过度诊断和假阳性等任何不良后果,帮助对癌症控制计划进行全面分析,包括癌症筛查。该方法已应用于世界卫生组织分类的两个地区的乳腺癌、宫颈癌和结直肠癌:撒哈拉以南非洲东部(AFRE)和东南亚(SEARB)。癌症模型已被纳入 Spectrum 软件,并通过人口预测(DemProj)模块与特定国家的人口数据以及通过 OneHealth 工具与成本数据进行接口。这些软件是开放获取的,可以供利益相关者使用,以分析其感兴趣的国家的特定筛查策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验