Suppr超能文献

比较野生新热带鸟类的肌胃和肠道微生物群。

Comparison of gizzard and intestinal microbiota of wild neotropical birds.

机构信息

Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto de Investigaciones Científicas (IVIC), Caracas, Venezuela.

Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea.

出版信息

PLoS One. 2018 Mar 26;13(3):e0194857. doi: 10.1371/journal.pone.0194857. eCollection 2018.

Abstract

Gut bacterial communities have been shown to be influenced by diet, host phylogeny and anatomy, but most of these studies have been done in captive animals. Here we compare the bacterial communities in the digestive tract of wild birds. We characterized the gizzard and intestinal microbiota among 8 wild Neotropical bird species, granivorous or frugivorous species of the orders Columbiformes and Passeriformes. We sequenced the V4 region of the 16S rRNA gene in 94 collected samples from 32 wild birds from 5 localities, and compared bacterial communities by foraging guild, organ, locality and bird taxonomy. 16S rRNA gene-based sequencing data were examined using QIIME with linear discriminant analysis effect size (LEfSe) and metabolic pathways were predicted using PICRUSt algorism. We identified 8 bacterial phyla, dominated by Firmicutes, Actinobacteria and Proteobacteria. Beta diversity analyses indicated significant separation of gut communities by bird orders (Columbiformes vs. Passerifomes) and between bird species (p<0.01). In lower intestine, PICRUSt shows a predominance of carbohydrate metabolism in granivorous birds and xenobiotics biodegradation pathways in frugivorous birds. Gizzard microbiota was significantly richer in granivorous, in relation to frugivorous birds (Chao 1; non-parametric t-test, p<0.05), suggesting a microbial gizzard function, beyond grinding food. The results suggest that the most important factor separating the bacterial community structure was bird taxonomy, followed by foraging guild. However, variation between localities is also likely to be important, but this could not been assessed with our study design.

摘要

肠道细菌群落已被证明受饮食、宿主进化史和解剖结构的影响,但这些研究大多是在圈养动物中进行的。在这里,我们比较了野生鸟类消化道中的细菌群落。我们对 8 种新热带鸟类的砂囊和肠道微生物群进行了特征描述,这些鸟类是 Columbiformes 和 Passeriformes 目下的食谷鸟或食果鸟。我们从 5 个地点的 32 只野生鸟类中收集了 94 个样本,对其 16S rRNA 基因的 V4 区进行了测序,并通过觅食群体、器官、地点和鸟类分类学比较了细菌群落。使用 QIIME 基于 16S rRNA 基因的测序数据进行了线性判别分析效应大小(LEfSe)分析,并使用 PICRUSt 算法预测了代谢途径。我们确定了 8 个细菌门,主要由厚壁菌门、放线菌门和变形菌门组成。β多样性分析表明,鸟类目(Columbiformes 与 Passerifomes)和鸟类种间(p<0.01)的肠道群落有明显分离。在小肠中,PICRUSt 显示出食谷鸟中碳水化合物代谢和食果鸟中异生物质生物降解途径的优势。与食果鸟相比,食谷鸟的砂囊中微生物更为丰富(Chao 1;非参数 t 检验,p<0.05),这表明砂囊除了研磨食物外,还具有微生物功能。结果表明,分离细菌群落结构的最重要因素是鸟类分类学,其次是觅食群体。然而,由于我们的研究设计,地点之间的差异也可能很重要,但这无法进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0c/5868825/eb90fa995d24/pone.0194857.g001.jpg

相似文献

1
Comparison of gizzard and intestinal microbiota of wild neotropical birds.
PLoS One. 2018 Mar 26;13(3):e0194857. doi: 10.1371/journal.pone.0194857. eCollection 2018.
2
Composition, diversity and function of gastrointestinal microbiota in wild red-billed choughs (Pyrrhocorax pyrrhocorax).
Int Microbiol. 2019 Dec;22(4):491-500. doi: 10.1007/s10123-019-00076-2. Epub 2019 Apr 24.
3
Molecular characterization of the cloacal microbiota of wild and captive parrots.
Vet Microbiol. 2010 Dec 15;146(3-4):320-5. doi: 10.1016/j.vetmic.2010.05.024. Epub 2010 May 27.
4
Comparative analyses of the gut microbiota among three different wild geese species in the genus Anser.
J Basic Microbiol. 2018 Jun;58(6):543-553. doi: 10.1002/jobm.201800060. Epub 2018 Apr 18.
5
Exploring the faecal microbiome of the Eurasian nuthatch (Sitta europaea).
Arch Microbiol. 2021 Jul;203(5):2119-2127. doi: 10.1007/s00203-021-02195-9. Epub 2021 Feb 19.
6
Body Size Poorly Predicts Host-Associated Microbial Diversity in Wild Birds.
Microbiol Spectr. 2023 Jun 15;11(3):e0374922. doi: 10.1128/spectrum.03749-22. Epub 2023 Apr 11.
7
Host plants influence the composition of the gut bacteria in Henosepilachna vigintioctopunctata.
PLoS One. 2019 Oct 18;14(10):e0224213. doi: 10.1371/journal.pone.0224213. eCollection 2019.
8
The Composition of Gut Microbiota Community Structure of Jankowski's Bunting (Emberiza jankowskii).
Curr Microbiol. 2020 Nov;77(11):3731-3737. doi: 10.1007/s00284-020-02048-6. Epub 2020 Sep 17.
9
Recruitment and establishment of the gut microbiome in arctic shorebirds.
FEMS Microbiol Ecol. 2017 Dec 1;93(12). doi: 10.1093/femsec/fix142.
10
Altered gut microbiota associated with intestinal disease in grass carp (Ctenopharyngodon idellus).
World J Microbiol Biotechnol. 2018 May 18;34(6):71. doi: 10.1007/s11274-018-2447-2.

引用本文的文献

2
Uropygial gland microbiota of nearctic-neotropical migrants vary with season and migration distance.
Anim Microbiome. 2025 Jan 30;7(1):11. doi: 10.1186/s42523-024-00367-8.
3
Similarities and differences: species and diet impact gut microbiota of captive pheasants.
PeerJ. 2024 Mar 26;12:e16979. doi: 10.7717/peerj.16979. eCollection 2024.
4
Convergent remodelling of the gut microbiome is associated with host energetic condition over long-distance migration.
Funct Ecol. 2023 Nov;37(11):2840-2854. doi: 10.1111/1365-2435.14430. Epub 2023 Sep 27.
6
Staphylococcal species composition in the skin microbiota of domestic pigeons (Columba livia domestica).
PLoS One. 2023 Jul 12;18(7):e0287261. doi: 10.1371/journal.pone.0287261. eCollection 2023.
8
The avian gut microbiota: Diversity, influencing factors, and future directions.
Front Microbiol. 2022 Aug 5;13:934272. doi: 10.3389/fmicb.2022.934272. eCollection 2022.
9
An urban diet differentially alters the gut microbiome and metabolomic profiles compared with a seed diet in mourning doves.
Am J Physiol Regul Integr Comp Physiol. 2022 Oct 1;323(4):R385-R396. doi: 10.1152/ajpregu.00323.2021. Epub 2022 Aug 1.
10
The Gut Microbiome of 54 Mammalian Species.
Front Microbiol. 2022 Jun 16;13:886252. doi: 10.3389/fmicb.2022.886252. eCollection 2022.

本文引用的文献

1
Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species.
Microb Ecol. 2018 Feb;75(2):515-527. doi: 10.1007/s00248-017-1041-8. Epub 2017 Jul 22.
2
Characterization of the Microbiome along the Gastrointestinal Tract of Growing Turkeys.
Front Microbiol. 2017 Jun 22;8:1089. doi: 10.3389/fmicb.2017.01089. eCollection 2017.
5
Comprehensive Molecular Characterization of Bacterial Communities in Feces of Pet Birds Using 16S Marker Sequencing.
Microb Ecol. 2017 Jan;73(1):224-235. doi: 10.1007/s00248-016-0840-7. Epub 2016 Aug 27.
6
News in livestock research - use of Omics-technologies to study the microbiota in the gastrointestinal tract of farm animals.
Comput Struct Biotechnol J. 2014 Dec 24;13:55-63. doi: 10.1016/j.csbj.2014.12.005. eCollection 2015.
7
Comparative Gut Microbiota of 59 Neotropical Bird Species.
Front Microbiol. 2015 Dec 21;6:1403. doi: 10.3389/fmicb.2015.01403. eCollection 2015.
8
The Tasmanian devil microbiome-implications for conservation and management.
Microbiome. 2015 Dec 21;3:76. doi: 10.1186/s40168-015-0143-0.
10
The functionality of the gastrointestinal microbiome in non-human animals.
Microbiome. 2015 Nov 10;3:51. doi: 10.1186/s40168-015-0113-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验