Suppr超能文献

苹果硬度测定值的相互关系及建立交叉验证回归模型,以从仪器分析和成分分析预测感官属性。

Inter-correlation of apple firmness determinations and development of cross-validated regression models for prediction of sensory attributes from instrumental and compositional analyses.

机构信息

Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada.

Sustainable Agriculture Program, Kwantlen Polytechnic University, Richmond, BC V6X 3V8, Canada.

出版信息

Food Res Int. 2018 Apr;106:752-762. doi: 10.1016/j.foodres.2018.01.041. Epub 2018 Feb 8.

Abstract

The texture of apples is paramount for determining fruit quality. This research explored the correlations among firmness determinations from the Sinclair iQ™ Firmness Tester (SiQ™), the Aweta Acoustic Firmness Sensor (AFS), and eight measurements from the Mohr Digi-Test-2 (MDT) instrument. Assessments were conducted on a collection of nine apple cultivars (Ambrosia, Aurora Golden Gala™, Honeycrisp, Fuji, Imperial Gala, McIntosh, Pink Lady™, Silken, Salish™), with a broad range of firmness values, in each of two years. Sensory analysis of the apples was conducted using a semi-trained panel (n = 10) to evaluate crispness, hardness, juiciness and skin toughness, in quadruplicate at two testing dates, providing eight data points per cultivar per year. Inter-correlations of the instrumental firmness determinations (SiQ™, AFS, MDT) revealed that most values were highly correlated with one another (r > 0.500 n = 72). This suggested that the instruments were tracking similar, but not identical, underlying characteristics. Multiple regression models were developed using the 2016 data to predict the sensory attributes from the instrumental and compositional (titratable acidity, soluble solids concentration, absorbed juice) analyses. Models with the highest R were cross-validated using the 2015 data. Accuracy of these models was evaluated using R and prediction standard errors (PSEs) - an index quantifying the difference between the predicted and actual values. In general, simple 1- and 2-variable models satisfactorily predicted hardness and crispness, with the R values ranging between 85 and 89%, while more complex non-linear models were required to predict juiciness and skin toughness. Correlations coefficients reported in this research allow for interconversion of experimental firmness data, as determined by the SiQ™, AFS and MDT. Regression models predicting hardness, crispness and juiciness from instrumental/compositional analyses, revealed that the quality factor (QF) variable was particularly important for estimation of textural characteristics. Therefore the MDT, among the instruments evaluated, was the instrument of choice for quality assessment of apples. Since cross-validation of the models accounted for a high proportion of the variance (70-82%) in a new data set with small PSEs (2.67-6.36) (on a 100-unit scale), the developed models were appropriate for estimating the apple textural attributes.

摘要

苹果的质地对于确定果实品质至关重要。本研究探讨了 Sinclair iQ™ 硬度测试仪(SiQ™)、Aweta 声学硬度传感器(AFS)和 Mohr Digi-Test-2(MDT)仪器的 8 项测量之间的相关性。在两年的时间里,对包括 Ambrosia、Aurora Golden Gala™、Honeycrisp、Fuji、Imperial Gala、 McIntosh、Pink Lady™、Silken 和 Salish™ 在内的 9 个苹果品种进行了评估,这些品种的硬度值范围很广。使用半训练小组(n=10)对苹果进行感官分析,以评估每个品种每年两次测试日期的脆度、硬度、多汁性和果皮韧性,每个品种共获得 8 个数据点。仪器硬度测定(SiQ™、AFS、MDT)的相关性表明,大多数值彼此高度相关(r>0.500 n=72)。这表明这些仪器在跟踪相似但不完全相同的潜在特性。使用 2016 年的数据开发了多元回归模型,以从仪器和成分(可滴定酸度、可溶性固形物浓度、吸收果汁)分析中预测感官属性。使用 2015 年的数据对具有最高 R 的模型进行了交叉验证。使用 R 和预测标准误差(PSE)评估这些模型的准确性-PSE 是一个量化预测值与实际值之间差异的指数。一般来说,简单的 1 变量和 2 变量模型可以很好地预测硬度和脆性,R 值在 85%至 89%之间,而更复杂的非线性模型则需要预测多汁性和果皮韧性。本研究报告的相关系数允许根据 SiQ™、AFS 和 MDT 转换实验硬度数据。从仪器/成分分析预测硬度、脆性和多汁性的回归模型表明,质量因子(QF)变量对于估计质地特征尤为重要。因此,在所评估的仪器中,MDT 是评估苹果品质的首选仪器。由于模型的交叉验证占新数据集方差的很大比例(70-82%),并且 PSE 较小(2.67-6.36)(在 100 单位刻度上),因此开发的模型适合估计苹果质地属性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验