Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3398-E3407. doi: 10.1073/pnas.1720810115. Epub 2018 Mar 26.
The transmembrane docking of endoplasmic reticulum (ER) Ca-sensing STIM proteins with plasma membrane (PM) Orai Ca channels is a critical but poorly understood step in Ca signal generation. STIM1 protein dimers unfold to expose a discrete STIM-Orai activating region (SOAR1) that tethers and activates Orai1 channels within discrete ER-PM junctions. We reveal that each monomer within the SOAR dimer interacts independently with single Orai1 subunits to mediate cross-linking between Orai1 channels. Superresolution imaging and mobility measured by fluorescence recovery after photobleaching reveal that SOAR dimer cross-linking leads to substantial Orai1 channel clustering, resulting in increased efficacy and cooperativity of Orai1 channel function. A concatenated SOAR1 heterodimer containing one monomer point mutated at its critical Orai1 binding residue (F394H), although fully activating Orai channels, is completely defective in cross-linking Orai1 channels. Importantly, the naturally occurring STIM2 variant, STIM2.1, has an eight-amino acid insert in its SOAR unit that renders it functionally identical to the F394H mutant in SOAR1. Contrary to earlier predictions, the SOAR1-SOAR2.1 heterodimer fully activates Orai1 channels but prevents cross-linking and clustering of channels. Interestingly, combined expression of full-length STIM1 with STIM2.1 in a 5:1 ratio causes suppression of sustained agonist-induced Ca oscillations and protects cells from Ca overload, resulting from high agonist-induced Ca release. Thus, STIM2.1 exerts a powerful regulatory effect on signal generation likely through preventing Orai1 channel cross-linking. Overall, STIM-mediated cross-linking of Orai1 channels is a hitherto unrecognized functional paradigm that likely provides an organizational microenvironment within ER-PM junctions with important functional impact on Ca signal generation.
内质网 (ER) Ca 感应 STIM 蛋白与质膜 (PM) Orai Ca 通道的跨膜对接是 Ca 信号产生的关键步骤,但理解甚少。STIM1 蛋白二聚体展开以暴露出离散的 STIM-Orai 激活区 (SOAR1),该区域在离散的 ER-PM 连接点上连接并激活 Orai1 通道。我们揭示了 SOAR 二聚体中的每个单体都独立地与单个 Orai1 亚基相互作用,介导 Orai1 通道之间的交联。超分辨率成像和荧光恢复后漂白测量的流动性揭示,SOAR 二聚体交联导致 Orai1 通道的大量聚集,从而增加 Orai1 通道功能的效力和协同性。包含一个单体在其关键 Orai1 结合残基 (F394H) 处发生点突变的串联 SOAR1 异二聚体,尽管完全激活 Orai 通道,但在交联 Orai1 通道方面完全有缺陷。重要的是,天然存在的 STIM2 变体 STIM2.1 在其 SOAR 单元中具有八个氨基酸插入,使其在 SOAR1 中与 F394H 突变体功能完全相同。与早期的预测相反,SOAR1-SOAR2.1 异二聚体完全激活 Orai1 通道,但防止通道交联和聚集。有趣的是,全长 STIM1 与 STIM2.1 以 5:1 的比例共同表达会抑制持续激动剂诱导的 Ca 振荡,并防止由于高激动剂诱导的 Ca 释放而导致的细胞 Ca 过载。因此,STIM2.1 通过防止 Orai1 通道交联对信号产生产生强大的调节作用。总体而言,STIM 介导的 Orai1 通道交联是一个迄今为止尚未被认识的功能范例,它可能在 ER-PM 连接点内提供一个组织微环境,对 Ca 信号产生具有重要的功能影响。