Dept. Chem. Engr., Howard University, Washington, DC, USA.
Soft Matter. 2018 Apr 18;14(15):2879-2892. doi: 10.1039/c7sm02045g.
Cartilage is composed of cells and an extracellular matrix, the latter being a composite of a collagen mesh interpenetrated by proteoglycans responsible for tissue osmotic swelling. The matrix composition and structure vary through the tissue depth. Mapping such variability requires tissue sectioning to gain access. The resulting surface roughness, and concomitant proteoglycan loss contribute to large uncertainties in elastic modulus estimates. To extract elasticity values for the bulk matrix which are not obfuscated by the indeterminate surface layer, we developed a novel experimental and data analysis methodology. We analyzed the surface roughness to optimize the probe size, and performed high-resolution (1 μm) elasticity mapping on thin (∼12 μm), epiphyseal newborn mouse cartilage sections cut parallel to the bone longitudinal axis or normal to the articular surface. Mild fixation prevented the major proteoglycan loss observed in unfixed specimens but not the stress release that resulted in thickness changes in the sectioned matrix. Our novel data analysis method introduces a virtual contact point as a fitting parameter for the Hertz model, to minimize the effects of surface roughness and corrects for the finite section thickness. Our estimates of cartilage elasticity converge with increasing indentation depth and, unlike previous data interpretations, are consistent with linearly elastic material. A high cell density that leaves narrow matrix septa between cells may cause the underestimation of elastic moduli, whereas fixation probably causes an overestimation. The proposed methodology has broader relevance to nano- and micro-indentation of soft materials with multiple length scales of organization and whenever surface effects (including roughness, electrostatics, van der Waals forces, etc.) become significant.
软骨由细胞和细胞外基质组成,后者是由胶原网格交织而成的,其中穿插着负责组织渗透膨胀的蛋白聚糖。基质的组成和结构随组织深度而变化。要绘制这种可变性,需要对组织进行切片以获取信息。由此产生的表面粗糙度以及随之而来的蛋白聚糖损失,导致弹性模量估计存在很大的不确定性。为了提取不受不确定表面层干扰的整体基质的弹性值,我们开发了一种新的实验和数据分析方法。我们分析了表面粗糙度以优化探针尺寸,并对沿骨长轴平行或垂直于关节面切割的薄(约 12μm)、骺新生儿鼠软骨切片进行了高分辨率(1μm)弹性测绘。轻度固定可防止在未固定标本中观察到的主要蛋白聚糖丢失,但不能防止由于应力释放导致的切片基质厚度变化。我们的新数据分析方法引入了一个虚拟接触点作为赫兹模型的拟合参数,以最小化表面粗糙度的影响并校正有限的截面厚度。我们对软骨弹性的估计随压痕深度的增加而收敛,与以前的数据解释不同,与线弹性材料一致。细胞密度高会在细胞之间留下狭窄的基质隔室,这可能导致弹性模量的低估,而固定可能导致高估。所提出的方法对于具有多个组织尺度的软材料的纳米和微压痕具有更广泛的相关性,并且在表面效应(包括粗糙度、静电、范德华力等)变得显著时也是如此。