Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia.
Integrated Nanotechnology Research Center, Department of Physics , Khon Kaen University , Khon Kaen , Thailand.
ACS Sens. 2018 Apr 27;3(4):867-874. doi: 10.1021/acssensors.8b00167. Epub 2018 Apr 9.
Efficient sensing of sulfur containing toxic gases like HS and SO is of the utmost importance due to the adverse effects of these noxious gases. Absence of an efficient 2D-based nanosensor capable of anchoring HS and SO with feasible binding and an apparent variation in electronic properties upon the exposure of gas molecules has motivated us to explore the promise of a germanene nanosheet (Ge-NS) for this purpose. In the present study, we have performed a comprehensive computational investigation by means of DFT-based first-principles calculations to envisage the structural, electronic, and gas sensing properties of pristine, defected, and metal substituted Ge-NSs. Our initial screening has revealed that although interaction of SO with pristine Ge-NSs is within the desirable range, HS binding however falls below the required values to guarantee an effective sensing. To improve the binding characteristics, we have considered the interactions between HS and SO with defected and metal substituted Ge-NS. The systematic removals of Ge atoms from a reasonably large super cell lead to monovacancy, divacancies, and trivacancies in Ge-NS. Similarly, different transition metals like As, Co, Cu, Fe, Ga, Ge, Ni, and Zn have been substituted into the monolayer to realize substituted Ge-NS. Our van der Waals corrected DFT calculations have concluded that the vacancy and substitution defects not only improve the binding characteristics but also enhance the sensing propensity of both HS and SO. The total and projected density of states show significant variations in electronic properties of pristine and defected Ge-NSs before and after the exposure to the gases, which are essential in constituting a signal to be detected by the external circuit of the sensor. We strongly believe that our present work would not only advance the knowledge towards the application of Ge-NS-based sensing but also provide motivation for the synthesis of such efficient nanosensor for HS and SO based on Ge monolayer.
由于这些有害气体的不利影响,高效感测含硫的有毒气体(如 HS 和 SO)至关重要。缺乏一种能够有效固定 HS 和 SO 的基于 2D 的纳米传感器,该传感器具有可行的结合力,并且在暴露于气体分子时电子性能会明显变化,这促使我们探索锗烯纳米片(Ge-NS)在这方面的应用前景。在本研究中,我们通过基于 DFT 的第一性原理计算进行了全面的计算研究,以设想原始、有缺陷和金属取代的 Ge-NS 的结构、电子和气体传感特性。我们的初步筛选表明,尽管 SO 与原始 Ge-NS 的相互作用在理想范围内,但 HS 的结合力低于保证有效传感所需的值。为了改善结合特性,我们考虑了 HS 和 SO 与有缺陷和金属取代的 Ge-NS 之间的相互作用。从合理大的超胞中系统地去除 Ge 原子会导致 Ge-NS 中出现单空位、双空位和三空位。同样,不同的过渡金属如 As、Co、Cu、Fe、Ga、Ge、Ni 和 Zn 已被取代到单层中以实现取代的 Ge-NS。我们的范德华修正 DFT 计算得出结论,空位和取代缺陷不仅改善了结合特性,而且提高了 HS 和 SO 的传感倾向。总态密度和投影态密度显示出原始和有缺陷的 Ge-NS 在暴露于气体前后电子特性的显著变化,这对于构成由传感器外部电路检测到的信号至关重要。我们坚信,我们目前的工作不仅将推进基于 Ge-NS 的传感应用的知识,而且还将为基于 Ge 单层的 HS 和 SO 高效纳米传感器的合成提供动力。