Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America.
Department of Neuroscience, The University of Texas, Austin, Texas, United States of America.
PLoS Biol. 2018 Mar 27;16(3):e2004892. doi: 10.1371/journal.pbio.2004892. eCollection 2018 Mar.
Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.
大多数弱电鱼通过感知由肌肉衍生的电器官产生的电信号来进行导航和交流。有一种谱系(Apteronotidae)的成年鱼,其电器官的放电频率超过 1 kHz,而是由专门的脊髓神经元(电运动神经元 [EMNs])的轴突衍生而来的电器官。EMNs 自发放电,是已知放电最快的神经元。这种生理极端的表型依赖于持续的钠离子电流,但其分子基础仍不清楚。我们发现,该谱系中一种骨骼肌特异性钠离子通道基因发生了复制,并且在大约 200 万年内,开始在脊髓中表达,这是该同工型的一个新的表达部位。同时,导致持续钠离子电流的氨基酸替换在通道失活区域积累。因此,一种允许极端神经元放电的新适应是由一种肌肉表达的钠离子通道基因的复制、表达改变和快速序列进化产生的。