Suppr超能文献

生态介导的电器官放电差异驱动南美电鱼钠离子通道基因的进化。

Ecologically mediated differences in electric organ discharge drive evolution in a sodium channel gene in South American electric fishes.

机构信息

Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.

Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, Canada M5S 3G5.

出版信息

Biol Lett. 2024 Feb;20(2):20230480. doi: 10.1098/rsbl.2023.0480. Epub 2024 Feb 28.

Abstract

Active electroreception-the ability to detect objects and communicate with conspecifics via the detection and generation of electric organ discharges (EODs)-has evolved convergently in several fish lineages. South American electric fishes (Gymnotiformes) are a highly species-rich group, possibly in part due to evolution of an electric organ (EO) that can produce diverse EODs. Neofunctionalization of a voltage-gated sodium channel gene accompanied the evolution of electrogenic tissue from muscle and resulted in a novel gene (scn4aa) uniquely expressed in the EO. Here, we investigate the link between variation in scn4aa and differences in EOD waveform. We combine gymnotiform scn4aa sequences encoding the C-terminus of the Na1.4a protein, with biogeographic data and EOD recordings to test whether physiological transitions among EOD types accompany differential selection pressures on scn4aa. We found positive selection on scn4aa coincided with shifts in EOD types. Species that evolved in the absence of predators, which likely selected for reduced EOD complexity, exhibited increased scn4aa evolutionary rates. We model mutations in the protein that may underlie changes in protein function and discuss our findings in the context of gymnotiform signalling ecology. Together, this work sheds light on the selective forces underpinning major evolutionary transitions in electric signal production.

摘要

主动电感受-the ability to detect objects and communicate with conspecifics via the detection and generation of electric organ discharges (EODs)-has evolved convergently in several fish lineages. 南美电鱼(Gymnotiformes)是一个物种非常丰富的群体,部分原因可能是进化出了一种可以产生多种电脉冲的电器官(EO)。电压门控钠离子通道基因的新功能化伴随着从肌肉进化出发电组织,导致了一个独特表达在电器官中的新基因(scn4aa)。在这里,我们研究了 scn4aa 的变异与电脉冲波形差异之间的联系。我们将编码 Na1.4a 蛋白 C 端的 gymnotiform scn4aa 序列与生物地理数据和电脉冲记录相结合,以测试 EOD 类型之间的生理转变是否伴随着对 scn4aa 的不同选择压力。我们发现,scn4aa 上的正选择与 EOD 类型的转变相吻合。在没有捕食者的环境中进化的物种,由于可能选择了减少电脉冲复杂性,表现出增加的 scn4aa 进化速率。我们对可能导致蛋白质功能变化的突变进行了建模,并在 gymnotiform 信号生态学的背景下讨论了我们的发现。总的来说,这项工作揭示了在电信号产生的主要进化转变中起作用的选择压力。

相似文献

3
Molecular evolution of communication signals in electric fish.电鱼通讯信号的分子进化
J Exp Biol. 2008 Jun;211(Pt 11):1814-8. doi: 10.1242/jeb.015982.
4
Electroreception, electrogenesis and electric signal evolution.电感受、电发生和电信号进化。
J Fish Biol. 2019 Jul;95(1):92-134. doi: 10.1111/jfb.13922. Epub 2019 Mar 18.
7
The evolutionary origins of electric signal complexity.电信号复杂性的进化起源。
J Physiol Paris. 2002 Sep-Dec;96(5-6):485-91. doi: 10.1016/S0928-4257(03)00004-4.

本文引用的文献

10
Structural basis of α-scorpion toxin action on Na channels.α-蝎毒素作用于钠离子通道的结构基础。
Science. 2019 Mar 22;363(6433). doi: 10.1126/science.aav8573. Epub 2019 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验