Suppr超能文献

基于双时相密集匹配点云与航空影像的建筑物变化检测

Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images.

作者信息

Pang Shiyan, Hu Xiangyun, Cai Zhongliang, Gong Jinqi, Zhang Mi

机构信息

Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China.

School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.

出版信息

Sensors (Basel). 2018 Mar 24;18(4):966. doi: 10.3390/s18040966.

Abstract

In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or non-buildings. For the acquisition of changed objects above ground, the change detection problem is converted into a binary classification, in which the changed area above ground is regarded as the foreground and the other area as the background. For the gridded points of each period, the graph cuts algorithm is adopted to classify the points into foreground and background, followed by the region-growing algorithm to form candidate changed building objects. A novel structural feature that was extracted from aerial images is constructed to classify the candidate changed building objects into buildings and non-buildings. The changed building objects are further classified as "newly built", "taller", "demolished", and "lower" by combining the classification and the digital surface models of two periods. Finally, three typical areas from a large dataset are used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the proposed algorithm.

摘要

在这项工作中,提出了一种基于双时相密集匹配点云与航空影像的新型建筑物变化检测方法,以解决两个主要问题,即稳健获取地面以上变化对象以及将变化对象自动分类为建筑物或非建筑物。对于地面以上变化对象的获取,将变化检测问题转换为二分类问题,其中将地面以上的变化区域视为前景,其他区域视为背景。对于每个时期的格网点,采用图割算法将点分类为前景和背景,然后通过区域生长算法形成候选变化建筑物对象。构建了一种从航空影像中提取的新型结构特征,用于将候选变化建筑物对象分类为建筑物和非建筑物。通过结合两个时期的分类和数字表面模型,将变化建筑物对象进一步分类为“新建”、“变高”、“拆除”和“变低”。最后,使用来自大型数据集的三个典型区域对所提出的方法进行验证。大量实验证明了所提算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fb/5948611/4bed1d30dd8f/sensors-18-00966-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验