Zheng Yuchen, Lin Kun, White Thomas, Pickreign Jeremy, Yuen-Reed Gigi
IBM T.J. Watson Research Center, Yorktown Heights, Yorktown Height, NY, USA.
Georgia Institute of Technology, H. Milton Stewart School of Industrial and Systems Engineering, Atlanta, GA, USA.
BMC Health Serv Res. 2018 Mar 27;18(1):213. doi: 10.1186/s12913-018-3038-5.
When a patient in a provider network seeks services outside of their community, the community experiences a leakage. Leakage is undesirable as it typically leads to higher out-of-network cost for patient and increases barrier for care coordination, which is particularly problematic for Accountable Care Organization (ACO) as the in-network providers are financially responsible for quality of care and outcome. We aim to design a data-driven method to identify naturally occurring provider networks driven by diabetic patient choices, and understand the relationship among provider composition, patient composition, and service leakage pattern. By doing so, we learn the features of low service leakage provider networks that can be generalized to different patient population.
Data used for this study include de-identified healthcare insurance administrative data acquired from Capital District Physicians' Health Plan (CDPHP) for diabetic patients who resided in four New York state counties (Albany, Rensselaer, Saratoga, and Schenectady) in 2014. We construct a healthcare provider network based on patients' historical medical insurance claims. A community detection algorithm is used to identify naturally occurring communities of collaborating providers. For each detected community, a profile is built using several new key measures to elucidate stakeholders of our findings. Finally, import-export analysis is conducted to benchmark their leakage pattern and identify further leakage reduction opportunity.
The design yields six major provider communities with diverse profiles. Some communities are geographically concentrated, while others tend to draw patients with certain diabetic co-morbidities. Providers from the same healthcare institution are likely to be assigned to the same community. While most communities have high within-community utilization and spending, at 85% and 86% respectively, leakage still persists. Hence, we utilize a metric from import-export analysis to detect leakage, gaining insight on how to minimize leakage.
We identify patient-driven provider organization by surfacing providers who share a large number of patients. By analyzing the import-export behavior of each identified community using a novel approach and profiling community patient and provider composition we understand the key features of having a balanced number of PCP and specialists and provider heterogeneity.
当医疗服务网络中的患者在其所在社区之外寻求服务时,该社区就会出现服务流失。服务流失是不理想的,因为它通常会导致患者更高的网络外成本,并增加护理协调的障碍,这对负责医疗组织(ACO)来说尤其成问题,因为网络内的提供者要对护理质量和结果承担财务责任。我们旨在设计一种数据驱动的方法,以识别由糖尿病患者选择驱动的自然形成的医疗服务提供者网络,并了解提供者构成、患者构成和服务流失模式之间的关系。通过这样做,我们了解低服务流失的医疗服务提供者网络的特征,这些特征可以推广到不同的患者群体。
本研究使用的数据包括从首都地区医师健康计划(CDPHP)获取的去标识化医疗保险管理数据,这些数据来自2014年居住在纽约州四个县(奥尔巴尼、伦斯勒、萨拉托加和斯克内克塔迪)的糖尿病患者。我们根据患者的历史医疗保险理赔记录构建一个医疗服务提供者网络。使用社区检测算法来识别自然形成的合作医疗服务提供者社区。对于每个检测到的社区,使用几个新的关键指标构建一个概况,以阐明我们研究结果的相关利益者。最后,进行进出口分析以衡量它们的流失模式,并确定进一步减少流失的机会。
该设计产生了六个具有不同概况的主要医疗服务提供者社区。一些社区在地理上集中,而另一些社区则倾向于吸引患有某些糖尿病合并症的患者。来自同一医疗机构的医疗服务提供者可能会被分配到同一个社区。虽然大多数社区的社区内利用率和支出较高,分别为85%和86%,但流失仍然存在。因此,我们使用进出口分析中的一个指标来检测流失,从而深入了解如何将流失降至最低。
我们通过找出共享大量患者的医疗服务提供者来识别患者驱动的医疗服务提供者组织。通过使用一种新颖的方法分析每个识别出的社区的进出口行为,并描述社区患者和医疗服务提供者的构成,我们了解了拥有数量平衡的初级保健医生和专科医生以及医疗服务提供者异质性的关键特征。