Suppr超能文献

随机临床试验中首次事件时间和复发性事件方法的比较。

Comparison of Time-to-First Event and Recurrent-Event Methods in Randomized Clinical Trials.

机构信息

Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (B.C., M.A.P., S.D.S.).

Department of Medical Statistics, London School of Hygiene, UK (S.P.).

出版信息

Circulation. 2018 Aug 7;138(6):570-577. doi: 10.1161/CIRCULATIONAHA.117.033065.

Abstract

BACKGROUND

Most phase-3 trials feature time-to-first event end points for their primary and secondary analyses. In chronic diseases, where a clinical event can occur >1 time, recurrent-event methods have been proposed to more fully capture disease burden and have been assumed to improve statistical precision and power compared with conventional time-to-first methods.

METHODS

To better characterize factors that influence statistical properties of recurrent-event and time-to-first methods in the evaluation of randomized therapy, we repeatedly simulated trials with 1:1 randomization of 4000 patients to active versus control therapy, with true patient-level risk reduction of 20% (ie, relative risk=0.80). For patients who discontinued active therapy after a first event, we assumed their risk reverted subsequently to their original placebo-level risk. Through simulation, we varied the degree of between-patient heterogeneity of risk and the extent of treatment discontinuation. Findings were compared with those from actual randomized clinical trials.

RESULTS

As the degree of between-patient heterogeneity of risk increased, both time-to-first and recurrent-event methods lost statistical power to detect a true risk reduction and confidence intervals widened. The recurrent-event analyses continued to estimate the true relative risk (0.80) as heterogeneity increased, whereas the Cox model produced attenuated estimates. The power of recurrent-event methods declined as the rate of study drug discontinuation postevent increased. Recurrent-event methods provided greater power than time-to-first methods in scenarios where drug discontinuation was ≤30% after a first event, lesser power with drug discontinuation rates of ≥60%, and comparable power otherwise. We confirmed in several actual trials of chronic heart failure that treatment effect estimates were attenuated when estimated via the Cox model and that increased statistical power from recurrent-event methods was most pronounced in trials with lower treatment discontinuation rates.

CONCLUSIONS

We find that the statistical power of both recurrent-events and time-to-first methods are reduced by increasing heterogeneity of patient risk, a parameter not included in conventional power and sample size formulas. Data from real clinical trials are consistent with simulation studies, confirming that the greatest statistical gains from use of recurrent-events methods occur in the presence of high patient heterogeneity and low rates of study drug discontinuation.

摘要

背景

大多数 3 期临床试验的主要和次要分析均采用首次事件时间作为终点。在慢性病中,临床事件可能多次发生。因此,已提出了复发事件方法,以便更全面地评估疾病负担,与传统的首次事件时间方法相比,该方法被认为可以提高统计精度和效能。

方法

为了更好地描述在评估随机治疗时复发事件和首次事件时间方法的统计性质的影响因素,我们对 4000 例患者进行了 1:1 随机分组,分别接受活性药物和对照药物治疗,患者的真实个体风险降低 20%(即相对风险=0.80)。对于首次事件后停止活性药物治疗的患者,我们假设其随后的风险恢复到原始安慰剂水平。通过模拟,我们改变了患者间风险的异质性程度和治疗中断的程度。将发现结果与实际随机临床试验进行了比较。

结果

随着患者间风险异质性程度的增加,首次事件时间和复发事件方法检测真实风险降低的效能均降低,置信区间变宽。随着异质性的增加,复发事件分析继续估计真实的相对风险(0.80),而 Cox 模型则产生了衰减的估计值。随着事件后研究药物停药率的增加,复发事件方法的效能下降。在首次事件后药物停药率≤30%的情况下,复发事件方法比首次事件时间方法提供更高的效能,在药物停药率≥60%的情况下,效能较低,而在其他情况下,两种方法的效能相当。我们在几项慢性心力衰竭的实际试验中证实,通过 Cox 模型估计的治疗效果估计值被衰减,并且复发事件方法的统计效能增益在停药率较低的试验中最为显著。

结论

我们发现,随着患者风险异质性的增加,复发事件和首次事件时间方法的统计效能均降低,而该参数未包含在传统的效能和样本量公式中。真实临床试验的数据与模拟研究一致,证实了从复发事件方法中获得的最大统计增益发生在患者异质性高且研究药物停药率低的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验