Suppr超能文献

心血管试验中总事件分析与首次事件分析在异质性方面的比较。

Comparison of total event analysis and first event analysis in relation to heterogeneity in cardiovascular trials.

作者信息

Lee Shun-Fu, Ramasundarahettige Chinthanie, Gerstein Hertzel C, McIntyre William F, Eikelboom John, O'Donnell Martin J, Zhou Yueci, Bangdiwala Shrikant I, Thabane Lehana

机构信息

Population Health Research Institute, McMaster University, 237 Barton Street East Hamilton, Hamilton, ON, L8L 2X2, Canada.

Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.

出版信息

BMC Med Res Methodol. 2025 Jun 9;25(1):159. doi: 10.1186/s12874-025-02593-3.

Abstract

BACKGROUND

In cardiovascular (CV) trials, analyzing the total number of events, rather than just time-to-first event, enhances understanding of participants' health. Adapting Cox models to account for between-subject heterogeneity in multiple events and understanding its impact plays crucial roles in total event analysis.

METHOD

This study compares effect sizes from first event and total event analyses in three cardiovascular trials: ORIGIN (N = 12,537, median follow-up of 6.2 years), COMPASS (N = 18,278, median follow-up of 1.8 years), TRANSCEND (N = 5,926, median follow-up of 1.1 years). It also examines the impact of heterogeneity, measured by the negative binomial overdispersion parameter. Treatment effects were assessed using the Cox model for first events and the negative binomial (NB), Andersen-Gill (AG), Prentice-Williams-Peterson (PWP), Wei-Lin-Weissfeld (WLW), and Lin-Wei-Yang-Ying (LWYY) models for total events. Hazard ratios (HRs) or risk ratios (RRs), 95% confidence intervals (CIs), and CI widths were reported. The risk ratio applies to negative binomial. The first composite was consisted of myocardial infarction (MI), stroke, cardiovascular death. Simulations assessed Type I error, power, and mean squared error across the different approaches.

RESULTS

In ORIGIN, the incidence per 100 years increased from 2.9 to 3.8 for the first composite with a heterogeneity of 2.4. The HR or RR for the first composite was 1.03 (95% CI, 0.94-1.12, CI width = 0.18) using Cox, 1.01 (95% CI, 0.92-1.11, CI width = 0.19) for NB, 1.01 (95% CI, 0.94-1.09, CI width = 0.15) for AG, 1.02 (95% CI, 0.94-1.10, CI width = 0.16) for PWP total, 1.01 (95% CI, 0.94-1.09, CI width = 0.15) for PWP gap, 1.03 (95% CI, 0.94-1.12, CI width = 0.18) for WLW and 1.01 (95% CI, 0.92-1.11, CI width = 0.19) for LWYY. Similar trends were observed in other studies. Our simulation results showed that total event approaches had approximately 5% higher power than the Cox model, though power declined exponentially across all methods with increasing heterogeneity. Among the total event methods, AG, PWP gap, and LWYY demonstrated better power, with AG and LWYY also achieving the smallest mean squared error (MSE).

CONCLUSIONS

High heterogeneity arises when a small number of patients experience a disproportionately large number of events. This effect is more pronounced when the overall event incidence is low and few patients experience any events. The effect size and CI width stayed consistent with low heterogeneity across different approaches. Power decreased with high heterogeneity. The AG and LWYY approaches slightly outperformed the other approaches.

CLINICAL TRIAL REGISTRATION

ORIGIN (NCT00069784), COMPASS (NCT01776424), TRANSCEND (NCT00153101).

摘要

背景

在心血管(CV)试验中,分析事件总数而非仅首次事件发生时间,有助于加深对参与者健康状况的理解。使Cox模型适应多事件中个体间的异质性并理解其影响,在总事件分析中起着关键作用。

方法

本研究比较了三项心血管试验中首次事件分析和总事件分析的效应量:ORIGIN(N = 12537,中位随访6.2年)、COMPASS(N = 18278,中位随访1.8年)、TRANSCEND(N = 5926,中位随访1.1年)。研究还考察了由负二项超离散参数衡量的异质性的影响。使用Cox模型分析首次事件的治疗效果,使用负二项分布(NB)、安德森 - 吉尔(AG)、普伦蒂斯 - 威廉姆斯 - 彼得森(PWP)、魏 - 林 - 韦斯菲尔德(WLW)和林 - 魏 - 杨 - 英(LWYY)模型分析总事件的治疗效果。报告了风险比(HRs)或相对危险度(RRs)、95%置信区间(CIs)和CI宽度。相对危险度适用于负二项分布。首个复合终点包括心肌梗死(MI)、中风、心血管死亡。模拟评估了不同方法的I型错误、检验效能和均方误差。

结果

在ORIGIN试验中,首个复合终点每100年的发生率从2.9升至3.8,异质性为2.4。使用Cox模型时,首个复合终点的HR或RR为1.03(95%CI,0.94 - 1.12,CI宽度 = 0.18);NB模型为1.01(95%CI,0.92 - 1.11,CI宽度 = 0.19);AG模型为1.01(95%CI,0.94 - 1.09,CI宽度 = 0.15);PWP总模型为1.02(95%CI,0.94 - 1.10,CI宽度 = 0.16);PWP间隔模型为1.01(95%CI,0.94 - 1.09,CI宽度 = 0.15);WLW模型为1.03(95%CI,0.94 - 1.12,CI宽度 = 0.18);LWYY模型为1.01(95%CI,0.92 - 1.11,CI宽度 = 0.19)。在其他研究中也观察到类似趋势。我们的模拟结果表明,总事件分析方法的检验效能比Cox模型高约5%,不过随着异质性增加,所有方法的检验效能均呈指数下降。在总事件分析方法中,AG、PWP间隔和LWYY方法检验效能更佳,AG和LWYY方法的均方误差(MSE)也最小。

结论

当少数患者经历大量不成比例的事件时,会出现高度异质性。当总体事件发生率较低且很少有患者经历任何事件时,这种效应更为明显。在不同方法中,效应量和CI宽度在低异质性情况下保持一致。高异质性会使检验效能降低。AG和LWYY方法略优于其他方法。

临床试验注册

ORIGIN(NCT00069784)、COMPASS(NCT01776424)、TRANSCEND(NCT00153101)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b016/12147344/24800d402b05/12874_2025_2593_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验