Suppr超能文献

综述:麦角硫因和卵硫醇的生物合成,天然产物生物合成中前所未有的转硫策略

Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis.

作者信息

Naowarojna Nathchar, Cheng Ronghai, Chen Li, Quill Melissa, Xu Meiling, Zhao Changming, Liu Pinghua

机构信息

Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States.

Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China.

出版信息

Biochemistry. 2018 Jun 19;57(24):3309-3325. doi: 10.1021/acs.biochem.8b00239. Epub 2018 Apr 6.

Abstract

As one of the most abundant elements on earth, sulfur is part of many small molecular metabolites and is key to their biological activities. Over the past few decades, some general strategies have been discovered for the incorporation of sulfur into natural products. In this review, we summarize recent efforts in elucidating the biosynthetic details for two sulfur-containing metabolites, ergothioneine and ovothiol. Their biosyntheses involve an unprecedented trans-sulfur strategy, a combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation reaction and a PLP enzyme-mediated C-S lyase reaction.

摘要

作为地球上含量最丰富的元素之一,硫是许多小分子代谢物的组成部分,并且是其生物活性的关键。在过去几十年中,人们发现了一些将硫掺入天然产物的通用策略。在本综述中,我们总结了最近在阐明两种含硫代谢物麦角硫因和卵硫醇生物合成细节方面所做的努力。它们的生物合成涉及一种前所未有的转硫策略,即单核非血红素铁酶催化的氧化碳 - 硫键形成反应与磷酸吡哆醛(PLP)酶介导的碳 - 硫裂解反应的结合。

相似文献

1
Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis.
Biochemistry. 2018 Jun 19;57(24):3309-3325. doi: 10.1021/acs.biochem.8b00239. Epub 2018 Apr 6.
2
Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses.
Org Lett. 2013 Sep 20;15(18):4854-7. doi: 10.1021/ol402275t. Epub 2013 Sep 9.
4
Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway.
Angew Chem Int Ed Engl. 2015 Feb 23;54(9):2821-4. doi: 10.1002/anie.201410045. Epub 2015 Jan 16.
6
In Vitro Reconstitution of the Remaining Steps in Ovothiol A Biosynthesis: C-S Lyase and Methyltransferase Reactions.
Org Lett. 2018 Sep 7;20(17):5427-5430. doi: 10.1021/acs.orglett.8b02332. Epub 2018 Aug 24.
7
The catalytic mechanism of sulfoxide synthases.
Curr Opin Chem Biol. 2020 Dec;59:111-118. doi: 10.1016/j.cbpa.2020.06.007. Epub 2020 Jul 26.
8
Ab initio studies of the properties of intracellular thiols ergothioneine and ovothiol.
Bioorg Med Chem Lett. 2005 Mar 1;15(5):1357-60. doi: 10.1016/j.bmcl.2005.01.014.
9
On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential.
Nat Prod Rep. 2018 Dec 12;35(12):1241-1250. doi: 10.1039/c8np00045j.
10
Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.
Chembiochem. 2017 Nov 2;18(21):2115-2118. doi: 10.1002/cbic.201700354. Epub 2017 Oct 2.

引用本文的文献

2
New Frontiers in Nonheme Enzymatic Oxyferryl Species.
Chembiochem. 2024 Nov 18;25(22):e202400307. doi: 10.1002/cbic.202400307. Epub 2024 Aug 7.
3
Biochemical and Structural Characterization of OvoA: A Mononuclear Nonheme Iron Enzyme from for Ovothiol Biosynthesis.
ACS Catal. 2023 Nov 14;13(23):15417-15426. doi: 10.1021/acscatal.3c04026. eCollection 2023 Dec 1.
4
An S=1 Iron(IV) Intermediate Revealed in a Non-Heme Iron Enzyme-Catalyzed Oxidative C-S Bond Formation.
Angew Chem Int Ed Engl. 2023 Oct 23;62(43):e202309362. doi: 10.1002/anie.202309362. Epub 2023 Sep 13.
5
Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from .
JACS Au. 2022 Aug 16;2(9):2098-2107. doi: 10.1021/jacsau.2c00365. eCollection 2022 Sep 26.
6
Charge Maintenance during Catalysis in Nonheme Iron Oxygenases.
ACS Catal. 2022 May 20;12(10):6191-6208. doi: 10.1021/acscatal.1c04770. Epub 2022 May 10.
8
Ir(iii)-catalyzed thioether directed arene C-H alkenylation.
RSC Adv. 2019 Sep 24;9(52):30134-30138. doi: 10.1039/c9ra06811b. eCollection 2019 Sep 23.
9
OvoA from ovothiol biosynthesis is a bifunction enzyme: thiol oxygenase and sulfoxide synthase activities.
Chem Sci. 2022 Mar 2;13(12):3589-3598. doi: 10.1039/d1sc05479a. eCollection 2022 Mar 24.
10
Substrate Recognition by the Peptidyl-()-2-mercaptoglycine Synthase TglHI during 3-Thiaglutamate Biosynthesis.
ACS Chem Biol. 2022 Apr 15;17(4):930-940. doi: 10.1021/acschembio.2c00087. Epub 2022 Apr 1.

本文引用的文献

2
Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism.
Cell Chem Biol. 2018 May 17;25(5):519-529.e4. doi: 10.1016/j.chembiol.2018.02.002. Epub 2018 Mar 1.
3
Biochemistry: The surprising history of an antioxidant.
Nature. 2017 Nov 1;551(7678):37-38. doi: 10.1038/551037a.
4
Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase.
Science. 2017 Oct 20;358(6361):373-377. doi: 10.1126/science.aan4574.
5
Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.
Chembiochem. 2017 Nov 2;18(21):2115-2118. doi: 10.1002/cbic.201700354. Epub 2017 Oct 2.
6
A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis.
Chem Sci. 2016 Jan 1;7(1):376-385. doi: 10.1039/c5sc03059e. Epub 2015 Oct 8.
7
Anaerobic Origin of Ergothioneine.
Angew Chem Int Ed Engl. 2017 Oct 2;56(41):12508-12511. doi: 10.1002/anie.201705932. Epub 2017 Sep 1.
8
Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme.
J Am Chem Soc. 2017 Jul 12;139(27):9259-9270. doi: 10.1021/jacs.7b04251. Epub 2017 Jun 27.
9
Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis.
Chem Rev. 2017 Apr 26;117(8):5521-5577. doi: 10.1021/acs.chemrev.6b00697. Epub 2017 Apr 18.
10
Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis.
Chem Rev. 2017 Apr 26;117(8):5784-5863. doi: 10.1021/acs.chemrev.6b00621. Epub 2017 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验