Aquila V, Swartz W H, Waugh D W, Colarco P R, Pawson S, Polvani L M, Stolarski R S
Goddard Earth Science Technology & Research (GESTAR), Columbia, MD.
Johns Hopkins University, Department of Earth and Planetary Science, Baltimore, MD.
J Geophys Res Atmos. 2016 Jul 16;121(13):8067-8082. doi: 10.1002/2015JD023841. Epub 2016 Apr 1.
Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear, and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone depleting substances (ODS) and by the two major volcanic eruptions of El Chichón (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of AMIP-style simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid 1990's is due to the decrease in ozone depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely responsible for the step-like behavior of global temperatures anomalies, together with volcanically induced ozone depletion and water vapor increases in the post-Pinatubo years.
卫星仪器显示,在整个数据记录期(1979 - 2014年)内,全球平流层温度呈下降趋势。这种降温并非线性,在20世纪80年代初和90年代中期出现了两个下降阶段。1979 - 1995年期间的特点是消耗臭氧层物质(ODS)浓度不断增加,以及发生了两次重大火山喷发,即奇孔火山(1982年)和皮纳图博火山(1991年)。1995年至今的时期特点是ODS浓度下降,且没有重大火山喷发。在整个时间段内,温室气体(GHG)浓度不断增加。为了确定不同强迫因素在全球平流层温度变化中的作用,我们使用美国国家航空航天局戈达德地球观测系统化学气候模型(GEOSCCM)进行了一组大气环流模式(AMIP)风格的模拟。我们发现,在我们的模型模拟中,1979年至今平流层的降温主要是由平流层中上层的温室气体浓度变化以及平流层下层的温室气体和ODS变化驱动的。虽然温室气体增加导致的降温趋势在卫星时代大致保持不变,但ODS浓度变化仅在20世纪90年代中期之前导致平流层显著降温,之后由于《蒙特利尔议定书》的实施,ODS浓度开始下降。零星的火山事件和太阳活动周期在平流层温度异常的时间序列中有明显特征,但在1979年至2014年的长期趋势中没有统计学上的显著作用。几个因素共同作用导致了平流层温度的阶梯状变化:在平流层下层,20世纪90年代中期开始的趋于平缓是由于消耗臭氧层物质的减少;皮纳图博火山和太阳活动周期通过气溶胶相关的变暖以及火山引发的臭氧消耗导致了温度的突然变化。在平流层中上层,太阳辐照度的变化在很大程度上导致了全球温度异常的阶梯状变化,同时还有皮纳图博火山喷发后火山引发的臭氧消耗和水汽增加。