Suppr超能文献

通过使用逐步添加单一强迫因素的模式积分来分离不同强迫因素在全球平流层温度变化中的作用。

Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings.

作者信息

Aquila V, Swartz W H, Waugh D W, Colarco P R, Pawson S, Polvani L M, Stolarski R S

机构信息

Goddard Earth Science Technology & Research (GESTAR), Columbia, MD.

Johns Hopkins University, Department of Earth and Planetary Science, Baltimore, MD.

出版信息

J Geophys Res Atmos. 2016 Jul 16;121(13):8067-8082. doi: 10.1002/2015JD023841. Epub 2016 Apr 1.

Abstract

Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear, and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone depleting substances (ODS) and by the two major volcanic eruptions of El Chichón (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of AMIP-style simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid 1990's is due to the decrease in ozone depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely responsible for the step-like behavior of global temperatures anomalies, together with volcanically induced ozone depletion and water vapor increases in the post-Pinatubo years.

摘要

卫星仪器显示,在整个数据记录期(1979 - 2014年)内,全球平流层温度呈下降趋势。这种降温并非线性,在20世纪80年代初和90年代中期出现了两个下降阶段。1979 - 1995年期间的特点是消耗臭氧层物质(ODS)浓度不断增加,以及发生了两次重大火山喷发,即奇孔火山(1982年)和皮纳图博火山(1991年)。1995年至今的时期特点是ODS浓度下降,且没有重大火山喷发。在整个时间段内,温室气体(GHG)浓度不断增加。为了确定不同强迫因素在全球平流层温度变化中的作用,我们使用美国国家航空航天局戈达德地球观测系统化学气候模型(GEOSCCM)进行了一组大气环流模式(AMIP)风格的模拟。我们发现,在我们的模型模拟中,1979年至今平流层的降温主要是由平流层中上层的温室气体浓度变化以及平流层下层的温室气体和ODS变化驱动的。虽然温室气体增加导致的降温趋势在卫星时代大致保持不变,但ODS浓度变化仅在20世纪90年代中期之前导致平流层显著降温,之后由于《蒙特利尔议定书》的实施,ODS浓度开始下降。零星的火山事件和太阳活动周期在平流层温度异常的时间序列中有明显特征,但在1979年至2014年的长期趋势中没有统计学上的显著作用。几个因素共同作用导致了平流层温度的阶梯状变化:在平流层下层,20世纪90年代中期开始的趋于平缓是由于消耗臭氧层物质的减少;皮纳图博火山和太阳活动周期通过气溶胶相关的变暖以及火山引发的臭氧消耗导致了温度的突然变化。在平流层中上层,太阳辐照度的变化在很大程度上导致了全球温度异常的阶梯状变化,同时还有皮纳图博火山喷发后火山引发的臭氧消耗和水汽增加。

相似文献

2
Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC.
J Geophys Res Atmos. 2015 Mar 16;120(5):2103-2118. doi: 10.1002/2014JD022430. Epub 2015 Mar 12.
3
Anthropogenic and natural influences in the evolution of lower stratospheric cooling.
Science. 2006 Feb 24;311(5764):1138-41. doi: 10.1126/science.1122587.
6
Ozone depletion and climate change: impacts on UV radiation.
Photochem Photobiol Sci. 2011 Feb;10(2):182-98. doi: 10.1039/c0pp90034f. Epub 2011 Jan 20.
7
Revisiting the mystery of recent stratospheric temperature trends.
Geophys Res Lett. 2018 Sep 28;45(18):9919-9933. doi: 10.1029/2018GL078035. Epub 2018 Jun 4.

引用本文的文献

1
Continuous rise of the tropopause in the Northern Hemisphere over 1980-2020.
Sci Adv. 2021 Nov 5;7(45):eabi8065. doi: 10.1126/sciadv.abi8065.
2
The Downward Influence of Sudden Stratospheric Warmings: Association with Tropospheric Precursors.
J Clim. 2019 Jan 1;32(1):85-108. doi: 10.1175/JCLI-D-18-0053.1. Epub 2018 Dec 5.
3
Revisiting the mystery of recent stratospheric temperature trends.
Geophys Res Lett. 2018 Sep 28;45(18):9919-9933. doi: 10.1029/2018GL078035. Epub 2018 Jun 4.
4
Observation and Attribution of Temperature Trends Near the Stratopause From HALOE.
J Geophys Res Atmos. 2019 Jun 27;124(12):6600-6611. doi: 10.1029/2019JD030455.
5
Quantifying stochastic uncertainty in detection time of human-caused climate signals.
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19821-19827. doi: 10.1073/pnas.1904586116. Epub 2019 Sep 16.
7
Nonlinear response of tropical lower stratospheric temperature and water vapor to ENSO.
Atmos Chem Phys. 2018;18(7):4597-4615. doi: 10.5194/acp-18-4597-2018. Epub 2018 Apr 5.

本文引用的文献

1
Human and natural influences on the changing thermal structure of the atmosphere.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17235-40. doi: 10.1073/pnas.1305332110. Epub 2013 Sep 16.
2
The mystery of recent stratospheric temperature trends.
Nature. 2012 Nov 29;491(7426):692-7. doi: 10.1038/nature11579.
3
Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13905-10. doi: 10.1073/pnas.0602861103. Epub 2006 Sep 12.
4
Anthropogenic and natural influences in the evolution of lower stratospheric cooling.
Science. 2006 Feb 24;311(5764):1138-41. doi: 10.1126/science.1122587.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验