Zhou Bo, Yan Long, Tao Lili, Song Nan, Wu Ming, Wang Ting, Zhang Qinyuan
State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials South China University of Technology Guangzhou 510641 China.
School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China.
Adv Sci (Weinh). 2017 Dec 18;5(3):1700667. doi: 10.1002/advs.201700667. eCollection 2018 Mar.
Upconverting materials have achieved great progress in recent years, however, it remains challenging for the mechanistic research on new upconversion strategy of lanthanides. Here, a novel and efficient strategy to realize photon upconversion from more lanthanides and fine control of lanthanide donor-acceptor interactions through using the interfacial energy transfer (IET) is reported. Unlike conventional energy-transfer upconversion and recently reported energy-migration upconversion, the IET approach is capable of enabling upconversions from Er, Tm, Ho, Tb, Eu, Dy to Sm in NaYF- and NaYbF-based core-shell nanostructures simultaneously. Applying the IET in a Nd-Yb coupled sensitizing system can also enable the 808/980 nm dual-wavelength excited upconversion from a single particle. More importantly, the construction of IET concept allows for a fine control and manipulation of lanthanide donor-acceptor interactions and dynamics at the nanometer-length scale by establishing a physical model upon an interlayer-mediated nanostructure. These findings open a door for the fundamental understanding of the luminescence dynamics involving lanthanides at nanoscale, which would further help conceive new scientific concepts and control photon upconversion at a single lanthanide ion level.
近年来,上转换材料取得了巨大进展,然而,镧系元素新上转换策略的机理研究仍然具有挑战性。在此,报道了一种新颖且高效的策略,即通过利用界面能量转移(IET)实现更多镧系元素的光子上转换以及对镧系供体-受体相互作用的精细控制。与传统的能量转移上转换和最近报道的能量迁移上转换不同,IET方法能够在基于NaYF和NaYbF的核壳纳米结构中同时实现从Er、Tm、Ho、Tb、Eu、Dy到Sm的上转换。在Nd-Yb耦合敏化系统中应用IET还可以实现单个粒子的808/980 nm双波长激发上转换。更重要的是,IET概念的构建通过在层间介导的纳米结构上建立物理模型,能够在纳米长度尺度上对镧系供体-受体相互作用和动力学进行精细控制和操纵。这些发现为在纳米尺度上深入理解涉及镧系元素的发光动力学打开了一扇门,这将进一步有助于构思新的科学概念并在单个镧系离子水平上控制光子上转换。