Suppr超能文献

通过调节镧系元素异质外延纳米粒子的界面层来同时增强光致发光、磁共振弛豫率和 CT 对比。

Simultaneous Enhancement of Photoluminescence, MRI Relaxivity, and CT Contrast by Tuning the Interfacial Layer of Lanthanide Heteroepitaxial Nanoparticles.

机构信息

Department of NanoEngineering, Jacobs School of Engineering, ‡Skaggs School of Pharmacy and Pharmaceutical Sciences, §Department of Bioengineering, Jacobs School of Engineering, ∥Materials Science and Engineering Program, ⊥Department of Orthopaedic Surgery, University of California San Diego , 9500 Gilman Dr., La Jolla, California 92093, United States.

出版信息

Nano Lett. 2017 Aug 9;17(8):4873-4880. doi: 10.1021/acs.nanolett.7b01753. Epub 2017 Jul 7.

Abstract

Nanoparticle (NP) based exogenous contrast agents assist biomedical imaging by enhancing the target visibility against the background. However, it is challenging to design a single type of contrast agents that are simultaneously suitable for various imaging modalities. The simple integration of different components into a single NP contrast agent does not guarantee the optimized properties of each individual components. Herein, we describe lanthanide-based core-shell-shell (CSS) NPs as triple-modal contrast agents that have concurrently enhanced performance compared to their individual components in photoluminescence (PL) imaging, magnetic resonance imaging (MRI), and computed tomography (CT). The key to simultaneous enhancement of PL intensity, MRI r relaxivity, and X-ray attenuation capability in CT is tuning the interfacial layer in the CSS NP architecture. By increasing the thickness of the interfacial layer, we show that (i) PL intensity is enhanced from completely quenched/dark state to brightly emissive state of both upconversion and downshifting luminescence at different excitation wavelengths (980 and 808 nm), (ii) MRI r relaxivity is enhanced by 5-fold from 11.4 to 52.9 mM s (per Gd) at clinically relevant field strength 1.5 T, and (iii) the CT Hounsfield Unit gain is 70% higher than the conventional iodine-based agents at the same mass concentration. Our results demonstrate that judiciously designed contrast agents for multimodal imaging can achieve simultaneously enhanced performance compared to their individual stand-alone structures and highlight that multimodality can be achieved without compromising on individual modality performance.

摘要

基于纳米粒子(NP)的外源性对比剂通过增强目标相对于背景的可见度来辅助生物医学成像。然而,设计一种同时适用于各种成像方式的单一类型的对比剂具有挑战性。将不同成分简单地整合到单个 NP 对比剂中并不能保证每个单独成分的优化性能。在此,我们将基于镧系元素的核壳壳(CSS) NPs 描述为三重模态对比剂,与它们在光致发光(PL)成像、磁共振成像(MRI)和计算机断层扫描(CT)中的各个组件相比,具有同时增强的性能。在 CSS NP 结构中调谐界面层是同时增强 PL 强度、MRI r 弛豫率和 CT 中 X 射线衰减能力的关键。通过增加界面层的厚度,我们表明:(i)PL 强度从完全猝灭/暗态增强到上转换和下转换发光的亮发射态,在不同的激发波长(980nm 和 808nm)下;(ii)在临床相关场强 1.5T 下,MRI r 弛豫率增强了 5 倍,达到 11.4 至 52.9mM s(每 Gd);(iii)与相同质量浓度的常规碘基试剂相比,CT 亨斯菲尔德单位增益提高了 70%。我们的结果表明,对于多模态成像,经过精心设计的对比剂可以实现与单个独立结构相比同时增强的性能,并强调多模态成像可以在不影响单个模态性能的情况下实现。

相似文献

2
Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes.
Biomaterials. 2015 Oct;65:115-23. doi: 10.1016/j.biomaterials.2015.06.023. Epub 2015 Jun 15.
3
Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents.
Inorg Chem. 2012 Feb 20;51(4):2522-32. doi: 10.1021/ic202446e. Epub 2012 Jan 10.
4
Core-Shell-Shell NaYbF4:Tm@CaF2@NaDyF4 Nanocomposites for Upconversion/T2-Weighted MRI/Computed Tomography Lymphatic Imaging.
ACS Appl Mater Interfaces. 2016 Aug 3;8(30):19208-16. doi: 10.1021/acsami.6b02856. Epub 2016 Jul 25.
7
Multicomponent nanocrystals with anti-Stokes luminescence as contrast agents for modern imaging techniques.
Adv Colloid Interface Sci. 2017 Jul;245:1-19. doi: 10.1016/j.cis.2017.05.006. Epub 2017 May 4.
8
Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging.
ACS Nano. 2013 Dec 23;7(12):11290-300. doi: 10.1021/nn405082y. Epub 2013 Nov 13.

引用本文的文献

1
Understanding of Lanthanide-Doped Core-Shell Structure at the Nanoscale Level.
Nanomaterials (Basel). 2024 Jun 20;14(12):1063. doi: 10.3390/nano14121063.
2
Recent advances of lanthanide nanomaterials in Tumor NIR fluorescence detection and treatment.
Mater Today Bio. 2023 May 2;20:100646. doi: 10.1016/j.mtbio.2023.100646. eCollection 2023 Jun.
3
Advances in nanomaterials for the diagnosis and treatment of head and neck cancers: A review.
Bioact Mater. 2022 Sep 2;25:430-444. doi: 10.1016/j.bioactmat.2022.08.010. eCollection 2023 Jul.
4
Nanomaterial-based CT contrast agents and their applications in image-guided therapy.
Theranostics. 2023 Jan 1;13(2):483-509. doi: 10.7150/thno.79625. eCollection 2023.
6
A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems.
Nano Res. 2020 May;13(5):1281-1294. doi: 10.1007/s12274-020-2721-0. Epub 2020 Mar 25.
7
8
Peasecod-Like Hollow Upconversion Nanocrystals with Excellent Optical Thermometric Performance.
Adv Sci (Weinh). 2020 Jun 11;7(14):2000731. doi: 10.1002/advs.202000731. eCollection 2020 Jul.
9
Excretable Lanthanide Nanoparticle for Biomedical Imaging and Surgical Navigation in the Second Near-Infrared Window.
Adv Sci (Weinh). 2019 Oct 4;6(23):1902042. doi: 10.1002/advs.201902042. eCollection 2019 Dec.

本文引用的文献

2
Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals.
J Am Chem Soc. 2017 Mar 1;139(8):3275-3282. doi: 10.1021/jacs.7b00223. Epub 2017 Feb 17.
3
Nanomaterials for In Vivo Imaging.
Chem Rev. 2017 Feb 8;117(3):901-986. doi: 10.1021/acs.chemrev.6b00073. Epub 2017 Jan 3.
4
Compact Micellization: A Strategy for Ultrahigh T1 Magnetic Resonance Contrast with Gadolinium-Based Nanocrystals.
ACS Nano. 2016 Sep 27;10(9):8299-307. doi: 10.1021/acsnano.6b02559. Epub 2016 Sep 8.
5
Upconversion Nanoparticles for Bioimaging and Regenerative Medicine.
Front Bioeng Biotechnol. 2016 Jun 13;4:47. doi: 10.3389/fbioe.2016.00047. eCollection 2016.
6
Core-Shell-Shell NaYbF4:Tm@CaF2@NaDyF4 Nanocomposites for Upconversion/T2-Weighted MRI/Computed Tomography Lymphatic Imaging.
ACS Appl Mater Interfaces. 2016 Aug 3;8(30):19208-16. doi: 10.1021/acsami.6b02856. Epub 2016 Jul 25.
7
What is new in nanoparticle-based photoacoustic imaging?
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jan;9(1). doi: 10.1002/wnan.1404. Epub 2016 Apr 1.
8
Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications.
Nanomedicine. 2016 Aug;12(6):1663-701. doi: 10.1016/j.nano.2016.02.019. Epub 2016 Mar 22.
10
Recent Advances in Higher-Order, Multimodal, Biomedical Imaging Agents.
Small. 2015 Sep 16;11(35):4445-61. doi: 10.1002/smll.201500735. Epub 2015 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验