Pereira-Azevedo Nuno, Verbeek Jan F M, Nieboer Daan, Bangma Chris H, Roobol Monique J
Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Urology, Centro Hospitalar do Porto, Porto, Portugal.
Transl Androl Urol. 2018 Feb;7(1):18-26. doi: 10.21037/tau.2017.12.21.
Multivariable risk calculators (RCs) predicting prostate cancer (PCa) aim to reduce unnecessary workup (e.g., MRI and biopsy) by selectively identifying those men at risk for PCa or clinically significant PCa (csPCa) (Gleason ≥7). The lack of an adequate comparison makes choosing between RCs difficult for patients, clinicians and guideline developers. We aim to perform a head-to-head comparison of seven well known RCs predicting biopsy outcome.
Our study comprised 7,119 men from ten independent contemporary cohorts in Europe and Australia, who underwent prostate biopsy between 2007 and 2015. We evaluated the performance of the ERSPC RPCRC, Finne, Chun, ProstataClass, Karakiewicz, Sunnybrook, and PCPT 2.0 (HG) RCs in predicting the presence of any PCa and csPCa. Performance was assessed by discrimination, calibration and net benefit analyses.
A total of 3,458 (48%) PCa were detected; 1,784 (25%) men had csPCa. No particular RC stood out predicting any PCa: pooled area under the ROC-curve (AUC) ranged between 0.64 and 0.72. The ERSPC RPCRC had the highest pooled AUC 0.77 (95% CI: 0.73-0.80) when predicting csPCa. Decision curve analysis (DCA) showed limited net benefit in the detection of csPCa, but that can be improved by a simple calibration step. The main limitation is the retrospective design of the study.
No particular RC stands out when predicting biopsy outcome on the presence of any PCa. The ERSPC RPCRC is superior in identifying those men at risk for csPCa. Net benefit analyses show that a multivariate approach before further workup is advisable.
预测前列腺癌(PCa)的多变量风险计算器(RCs)旨在通过选择性地识别那些有PCa或临床显著性PCa(csPCa)(Gleason评分≥7)风险的男性,减少不必要的检查(如MRI和活检)。由于缺乏充分的比较,患者、临床医生和指南制定者在不同的RCs之间做出选择时感到困难。我们旨在对七种预测活检结果的知名RCs进行直接比较。
我们的研究纳入了来自欧洲和澳大利亚十个独立当代队列的7119名男性,他们在2007年至2015年间接受了前列腺活检。我们评估了ERSPC RPCRC、Finne、Chun、ProstataClass、Karakiewicz、Sunnybrook和PCPT 2.0(HG)RCs在预测任何PCa和csPCa存在方面的性能。通过辨别力、校准和净效益分析来评估性能。
共检测到3458例(48%)PCa;1784例(25%)男性患有csPCa。在预测任何PCa方面,没有哪种特定的RC表现突出:ROC曲线下的合并面积(AUC)在0.64至0.72之间。在预测csPCa时,ERSPC RPCRC的合并AUC最高,为0.77(95%CI:0.73 - 0.80)。决策曲线分析(DCA)显示在检测csPCa方面净效益有限,但通过一个简单的校准步骤可以改善。主要局限性是该研究的回顾性设计。
在预测任何PCa存在的活检结果时,没有哪种特定的RC表现突出。ERSPC RPCRC在识别有csPCa风险的男性方面更具优势。净效益分析表明,在进一步检查之前采用多变量方法是可取的。