Suppr超能文献

使用决策曲线评估风险预测模型的临床影响:正确解读和合理使用指南

Assessing the Clinical Impact of Risk Prediction Models With Decision Curves: Guidance for Correct Interpretation and Appropriate Use.

作者信息

Kerr Kathleen F, Brown Marshall D, Zhu Kehao, Janes Holly

机构信息

Kathleen F. Kerr and Kehao Zhu, University of Washington; and Marshall D. Brown and Holly Janes, Fred Hutchinson Cancer Research Center, Seattle, WA

Kathleen F. Kerr and Kehao Zhu, University of Washington; and Marshall D. Brown and Holly Janes, Fred Hutchinson Cancer Research Center, Seattle, WA.

出版信息

J Clin Oncol. 2016 Jul 20;34(21):2534-40. doi: 10.1200/JCO.2015.65.5654. Epub 2016 May 31.

Abstract

The decision curve is a graphical summary recently proposed for assessing the potential clinical impact of risk prediction biomarkers or risk models for recommending treatment or intervention. It was applied recently in an article in Journal of Clinical Oncology to measure the impact of using a genomic risk model for deciding on adjuvant radiation therapy for prostate cancer treated with radical prostatectomy. We illustrate the use of decision curves for evaluating clinical- and biomarker-based models for predicting a man's risk of prostate cancer, which could be used to guide the decision to biopsy. Decision curves are grounded in a decision-theoretical framework that accounts for both the benefits of intervention and the costs of intervention to a patient who cannot benefit. Decision curves are thus an improvement over purely mathematical measures of performance such as the area under the receiver operating characteristic curve. However, there are challenges in using and interpreting decision curves appropriately. We caution that decision curves cannot be used to identify the optimal risk threshold for recommending intervention. We discuss the use of decision curves for miscalibrated risk models. Finally, we emphasize that a decision curve shows the performance of a risk model in a population in which every patient has the same expected benefit and cost of intervention. If every patient has a personal benefit and cost, then the curves are not useful. If subpopulations have different benefits and costs, subpopulation-specific decision curves should be used. As a companion to this article, we released an R software package called DecisionCurve for making decision curves and related graphics.

摘要

决策曲线是最近提出的一种图形化总结方法,用于评估风险预测生物标志物或风险模型对推荐治疗或干预措施的潜在临床影响。最近它被应用于《临床肿瘤学杂志》的一篇文章中,以衡量使用基因组风险模型来决定对接受根治性前列腺切除术的前列腺癌患者进行辅助放疗的影响。我们阐述了如何使用决策曲线来评估基于临床和生物标志物的模型,以预测男性患前列腺癌的风险,这可用于指导活检决策。决策曲线基于一个决策理论框架,该框架考虑了干预的益处以及对无法从干预中获益的患者的干预成本。因此,决策曲线是对诸如受试者操作特征曲线下面积等纯粹数学性能指标的改进。然而,正确使用和解释决策曲线存在挑战。我们提醒,决策曲线不能用于确定推荐干预措施的最佳风险阈值。我们讨论了决策曲线在风险模型校准不当情况下的使用。最后,我们强调决策曲线显示的是风险模型在一个所有患者具有相同预期干预益处和成本的人群中的性能。如果每个患者都有个人的益处和成本,那么这些曲线就没有用处。如果亚人群具有不同的益处和成本,则应使用特定亚人群的决策曲线。作为本文的补充,我们发布了一个名为DecisionCurve的R软件包,用于绘制决策曲线和相关图形。

相似文献

1
Assessing the Clinical Impact of Risk Prediction Models With Decision Curves: Guidance for Correct Interpretation and Appropriate Use.
J Clin Oncol. 2016 Jul 20;34(21):2534-40. doi: 10.1200/JCO.2015.65.5654. Epub 2016 May 31.
2
Assessing the Clinical Impact of Risk Models for Opting Out of Treatment.
Med Decis Making. 2019 Feb;39(2):86-90. doi: 10.1177/0272989X18819479. Epub 2019 Jan 16.
3
Evaluation of models predicting insignificant prostate cancer to select men for active surveillance of prostate cancer.
Prostate Cancer Prostatic Dis. 2015 Jun;18(2):137-43. doi: 10.1038/pcan.2015.1. Epub 2015 Feb 10.
5
A Framework for Treatment Decision Making at Prostate Cancer Recurrence.
Med Decis Making. 2017 Nov;37(8):905-913. doi: 10.1177/0272989X17711913. Epub 2017 May 31.
9
Comparative analysis of three risk assessment tools in Australian patients with prostate cancer.
BJU Int. 2011 Nov;108 Suppl 2:51-6. doi: 10.1111/j.1464-410X.2011.10687.x.

引用本文的文献

2
Radiomics derived from HRCT can predict mortality in patients with acute exacerbation of idiopathic pulmonary fibrosis.
J Thorac Dis. 2025 Jul 31;17(7):4990-5001. doi: 10.21037/jtd-2025-194. Epub 2025 Jul 25.
9
Clinical characteristics of bronchopulmonary dysplasia and the risk of sepsis onset prediction via machine learning models.
Front Pediatr. 2025 Jun 27;13:1566747. doi: 10.3389/fped.2025.1566747. eCollection 2025.

本文引用的文献

1
The Net Reclassification Index (NRI): a Misleading Measure of Prediction Improvement Even with Independent Test Data Sets.
Stat Biosci. 2015 Oct 1;7(2):282-295. doi: 10.1007/s12561-014-9118-0. Epub 2014 Aug 23.
3
Evaluating Prognostic Markers Using Relative Utility Curves and Test Tradeoffs.
J Clin Oncol. 2015 Aug 10;33(23):2578-80. doi: 10.1200/JCO.2014.58.0092. Epub 2015 Jun 29.
6
Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy.
J Clin Oncol. 2015 Mar 10;33(8):944-51. doi: 10.1200/JCO.2014.59.0026. Epub 2015 Feb 9.
8
Calibration of risk prediction models: impact on decision-analytic performance.
Med Decis Making. 2015 Feb;35(2):162-9. doi: 10.1177/0272989X14547233. Epub 2014 Aug 25.
9
Urinary cell mRNA profiles and differential diagnosis of acute kidney graft dysfunction.
J Am Soc Nephrol. 2014 Jul;25(7):1586-97. doi: 10.1681/ASN.2013080900. Epub 2014 Mar 7.
10
A nomogram predicting pulmonary metastasis of hepatocellular carcinoma following partial hepatectomy.
Br J Cancer. 2014 Mar 4;110(5):1110-7. doi: 10.1038/bjc.2014.19. Epub 2014 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验