Suppr超能文献

一种基于智能、实用的深度学习的前列腺特异性抗原灰区患者临床决策支持工具:模型开发与验证。

A smart, practical, deep learning-based clinical decision support tool for patients in the prostate-specific antigen gray zone: model development and validation.

机构信息

Department of Urology, Seoul National University Bundang Hospital, Seongnam, South Korea.

Department of Urology, Seoul National University College of Medicine, Seoul, South Korea.

出版信息

J Am Med Inform Assoc. 2022 Oct 7;29(11):1949-1957. doi: 10.1093/jamia/ocac141.

Abstract

OBJECTIVE

Despite efforts to improve screening and early detection of prostate cancer (PC), no available biomarker has shown acceptable performance in patients with prostate-specific antigen (PSA) gray zones. We aimed to develop a deep learning-based prediction model with minimized parameters and missing value handling algorithms for PC and clinically significant PC (CSPC).

MATERIALS AND METHODS

We retrospectively analyzed data from 18 824 prostate biopsies collected between March 2003 and December 2020 from 2 databases, resulting in 12 739 cases in the PSA gray zone of 2.0-10.0 ng/mL. Dense neural network (DNN) and extreme gradient boosting (XGBoost) models for PC and CSPC were developed with 5-fold cross-validation. The area under the curve of the receiver operating characteristic (AUROC) was compared with that of serum PSA, PSA density, free PSA (fPSA) portion, and prostate health index (PHI).

RESULTS

The AUROC values in the DNN model with the imputation of missing values were 0.739 and 0.708 (PC) and 0.769 and 0.742 (CSPC) in internal and external validation, whereas those of the non-imputed dataset were 0.740 and 0.771 (PC) and 0.807 and 0.771 (CSPC), respectively. The performance of the DNN model was like that of the XGBoost model, but better than all tested clinical biomarkers for both PC and CSPC. The developed DNN model outperformed PHI, serum PSA, and percent-fPSA with or without missing value imputation.

DISCUSSION

DNN models for missing value imputation can be used to predict PC and CSPC. Further validation in real-life scenarios are need to recommend for actual implementation, but the results from our study support the increasing role of deep learning analytics in the clinical setting.

CONCLUSIONS

A deep learning model for PC and CSPC in PSA gray zones using minimal, routinely used clinical parameter variables and data imputation of missing values was successfully developed and validated.

摘要

目的

尽管已经努力改进前列腺癌(PC)的筛查和早期检测,但在前列腺特异性抗原(PSA)灰色区域的患者中,没有一种可用的生物标志物表现出可接受的性能。我们旨在开发一种基于深度学习的预测模型,该模型具有最小的参数和缺失值处理算法,用于预测 PC 和临床显著 PC(CSPC)。

材料和方法

我们回顾性地分析了 2003 年 3 月至 2020 年 12 月期间从 2 个数据库中收集的 18824 例前列腺活检数据,其中 12739 例患者处于 2.0-10.0ng/mL 的 PSA 灰色区域。使用 5 折交叉验证开发了用于 PC 和 CSPC 的密集神经网络(DNN)和极端梯度增强(XGBoost)模型。比较了受试者工作特征(ROC)曲线下面积与血清 PSA、PSA 密度、游离 PSA(fPSA)比例和前列腺健康指数(PHI)的曲线下面积。

结果

在缺失值插补的 DNN 模型中,内部和外部验证的 AUC 值分别为 0.739 和 0.708(PC)和 0.769 和 0.742(CSPC),而非插补数据集的 AUC 值分别为 0.740 和 0.771(PC)和 0.807 和 0.771(CSPC)。DNN 模型的性能与 XGBoost 模型相似,但优于所有用于 PC 和 CSPC 的测试临床生物标志物。开发的 DNN 模型在有或没有缺失值插补的情况下,均优于 PHI、血清 PSA 和 fPSA。

讨论

用于缺失值插补的 DNN 模型可用于预测 PC 和 CSPC。需要在实际场景中进一步验证,以推荐实际实施,但我们的研究结果支持深度学习分析在临床环境中的作用越来越大。

结论

成功开发并验证了一种基于深度学习的 PSA 灰色区域 PC 和 CSPC 模型,该模型使用最小的、常规使用的临床参数变量和缺失值的数据插补。

相似文献

本文引用的文献

5
Benign overfitting in linear regression.线性回归中的良性过拟合。
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30063-30070. doi: 10.1073/pnas.1907378117. Epub 2020 Apr 24.
7
A review of optimal prostate biopsy: indications and techniques.最佳前列腺活检综述:适应证与技术
Ther Adv Urol. 2019 Aug 28;11:1756287219870074. doi: 10.1177/1756287219870074. eCollection 2019 Jan-Dec.
8
A guide to deep learning in healthcare.深度学习在医疗保健中的应用指南。
Nat Med. 2019 Jan;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验