Suppr超能文献

基于核主成分分析的连续音乐聆听 fMRI 刺激特征生成。

On application of kernel PCA for generating stimulus features for fMRI during continuous music listening.

机构信息

Faculty of Information Technology, University of Jyvaskyla, Finland.

Department of Music, Art and Culture Studies, University of Jyvaskyla, Finland.

出版信息

J Neurosci Methods. 2018 Jun 1;303:1-6. doi: 10.1016/j.jneumeth.2018.03.014. Epub 2018 Mar 27.

Abstract

BACKGROUND

There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. NEW METHOD: fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined.

RESULTS

The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas.

COMPARISON WITH EXISTING METHOD

Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study.

CONCLUSIONS

Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing.

摘要

背景

人们对自然主义神经影像学实验越来越感兴趣,这些实验加深了我们对人类大脑如何处理和整合多方面感官信息的理解,就像在现实世界中经常发生的那样。音乐就是这种复杂连续现象的一个很好的例子。在最近的几项 fMRI 研究中,研究人员在连续聆听音乐的环境中检查了音乐刺激的神经相关物,这些研究通过将从刺激音频中计算提取的声学描述符的线性组合,用一组高级特征来表示音乐刺激的多个感知属性。

新方法

本文使用了自然主义音乐聆听实验的 fMRI 数据。核主成分分析(KPCA)被应用于从刺激音频中提取的声学描述符,以生成一组非线性刺激特征。随后,检查了生成的高级特征的感知和神经相关物。

结果

生成的特征捕捉到了从线性 PCA 特征中隐藏的音乐感知,即节奏复杂性和事件同步性。新特征的神经相关物揭示了与复杂节奏处理相关的激活,包括听觉、运动和额叶区域。

与现有方法的比较

将结果与之前发表的研究进行了比较,该研究分析了相同的 fMRI 数据,但应用线性 PCA 生成刺激特征。为了能够进行结果比较,从之前的研究中采用了寻找刺激驱动功能图的方法。

结论

利用声学描述符之间的非线性关系可以产生新的高级刺激特征,这些特征反过来又可以揭示参与音乐处理的新大脑结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验