Gallos Ioannis K, Galaris Evangelos, Siettos Constantinos I
School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece.
Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università degli Studi di Napoli Federico II, Napoli, Italy.
Cogn Neurodyn. 2021 Aug;15(4):585-608. doi: 10.1007/s11571-020-09645-y. Epub 2020 Nov 3.
We construct embedded functional connectivity networks (FCN) from benchmark resting-state functional magnetic resonance imaging (rsfMRI) data acquired from patients with schizophrenia and healthy controls based on linear and nonlinear manifold learning algorithms, namely, Multidimensional Scaling, Isometric Feature Mapping, Diffusion Maps, Locally Linear Embedding and kernel PCA. Furthermore, based on key global graph-theoretic properties of the embedded FCN, we compare their classification potential using machine learning. We also assess the performance of two metrics that are widely used for the construction of FCN from fMRI, namely the Euclidean distance and the cross correlation metric. We show that diffusion maps with the cross correlation metric outperform the other combinations.
我们基于线性和非线性流形学习算法,即多维缩放、等距特征映射、扩散映射、局部线性嵌入和核主成分分析,从精神分裂症患者和健康对照者获取的基准静息态功能磁共振成像(rsfMRI)数据构建嵌入功能连接网络(FCN)。此外,基于嵌入FCN的关键全局图论属性,我们使用机器学习比较它们的分类潜力。我们还评估了两种广泛用于从功能磁共振成像构建FCN的指标的性能,即欧几里得距离和互相关指标。我们表明,使用互相关指标的扩散映射优于其他组合。