Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
Department of Biomedical Engineering Research Center, Gachon University, Inchon, Republic of Korea.
Sci Rep. 2021 Apr 30;11(1):9402. doi: 10.1038/s41598-021-88845-w.
We investigated the differential spatial covariance pattern of blood oxygen level-dependent (BOLD) responses to single-task and multitask functional magnetic resonance imaging (fMRI) between patients with psychophysiological insomnia (PI) and healthy controls (HCs), and evaluated features generated by principal component analysis (PCA) for discrimination of PI from HC, compared to features generated from BOLD responses to single-task fMRI using machine learning methods. In 19 patients with PI and 21 HCs, the mean beta value for each region of interest (ROIbval) was calculated with three contrast images (i.e., sleep-related picture, sleep-related sound, and Stroop stimuli). We performed discrimination analysis and compared with features generated from BOLD responses to single-task fMRI. We applied support vector machine analysis with a least absolute shrinkage and selection operator to evaluate five performance metrics: accuracy, recall, precision, specificity, and F2. Principal component features showed the best classification performance in all aspects of metrics compared to BOLD response to single-task fMRI. Bilateral inferior frontal gyrus (orbital), right calcarine cortex, right lingual gyrus, left inferior occipital gyrus, and left inferior temporal gyrus were identified as the most salient areas by feature selection. Our approach showed better performance in discriminating patients with PI from HCs, compared to single-task fMRI.
我们研究了心理生理性失眠 (PI) 患者与健康对照 (HC) 之间单任务和多任务功能磁共振成像 (fMRI) 中血氧水平依赖 (BOLD) 反应的差异空间协方差模式,并评估了主成分分析 (PCA) 生成的特征用于区分 PI 与 HC,与使用机器学习方法从单任务 fMRI 的 BOLD 反应生成的特征进行比较。在 19 名 PI 患者和 21 名 HC 中,使用三个对比图像(即睡眠相关图片、睡眠相关声音和 Stroop 刺激)计算每个感兴趣区(ROIbval)的平均β值。我们进行了判别分析,并与单任务 fMRI 的 BOLD 反应生成的特征进行了比较。我们应用支持向量机分析与最小绝对收缩和选择算子来评估五个性能指标:准确性、召回率、精度、特异性和 F2。与单任务 fMRI 的 BOLD 反应相比,主成分特征在所有指标方面都表现出最好的分类性能。特征选择确定双侧额下回(眶部)、右侧距状皮层、右侧舌回、左侧枕下回和左侧颞下回为最显著区域。与单任务 fMRI 相比,我们的方法在区分 PI 患者与 HC 方面表现出更好的性能。