Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
UTOX, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland.
Sci Rep. 2018 Mar 29;8(1):5388. doi: 10.1038/s41598-018-23410-6.
Although various drugs, environmental pollutants and nanoparticles (NP) can cross the human placental barrier and may harm the developing fetus, knowledge on predictive placental transfer rates and the underlying transport pathways is mostly lacking. Current available in vitro placental transfer models are often inappropriate for translocation studies of macromolecules or NPs and do not consider barrier function of placental endothelial cells (EC). Therefore, we developed a human placental in vitro co-culture transfer model with tight layers of trophoblasts (BeWo b30) and placental microvascular ECs (HPEC-A2) on a low-absorbing, 3 µm porous membrane. Translocation studies with four model substances and two polystyrene (PS) NPs across the individual and co-culture layers revealed that for most of these compounds, the trophoblast and the EC layer both demonstrate similar, but not additive, retention capacity. Only the paracellular marker Na-F was substantially more retained by the BeWo layer. Furthermore, simple shaking, which is often applied to mimic placental perfusion, did not alter translocation kinetics compared to static exposure. In conclusion, we developed a novel placental co-culture model, which provides predictive values for translocation of a broad variety of molecules and NPs and enables valuable mechanistic investigations on cell type-specific placental barrier function.
尽管各种药物、环境污染物和纳米颗粒 (NP) 都可以穿过胎盘屏障,并可能对发育中的胎儿造成伤害,但对于预测胎盘转运率和潜在的转运途径的知识却大多缺乏。目前现有的体外胎盘转运模型通常不适合用于研究大分子或 NP 的易位,也没有考虑到胎盘内皮细胞 (EC) 的屏障功能。因此,我们开发了一种人胎盘体外共培养转运模型,其中紧密排列的滋养层 (BeWo b30) 和胎盘微血管内皮细胞 (HPEC-A2) 位于低吸收性、3µm 多孔膜上。四种模型物质和两种聚苯乙烯 (PS) NP 在单个和共培养层中的易位研究表明,对于大多数这些化合物,滋养层和 EC 层都表现出相似的,但不是相加的保留能力。只有细胞旁标记物 Na-F 被 BeWo 层更多地保留。此外,与静态暴露相比,常用来模拟胎盘灌注的简单晃动并没有改变易位动力学。总之,我们开发了一种新型胎盘共培养模型,该模型可预测多种分子和 NP 的易位,并能够对胎盘屏障功能的细胞类型特异性进行有价值的机制研究。