Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.
Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
J Cell Mol Med. 2024 Oct;28(20):e70151. doi: 10.1111/jcmm.70151.
The placenta plays a critical role in maternal-fetal nutrient transport and fetal protection against drugs. Creating physiological in vitro models to study these processes is crucial, but technically challenging. This study introduces an efficient cell model that mimics the human placental barrier using co-cultures of primary trophoblasts and primary human umbilical vein endothelial cells (HUVEC) on a Transwell-based system. Monolayer formation was examined over 7 days by determining transepithelial electrical resistance (TEER), permeability of Lucifer yellow (LY) and inulin, localization of transport proteins at the trophoblast membrane (immunofluorescence), and syncytialization markers (RT-qPCR/ELISA). We analysed diffusion-based (caffeine/antipyrine) and transport-based (leucine/Rhodamine-123) processes to study the transfer of physiologically relevant compounds. The latter relies on the adequate localization and function of the amino-acid transporter LAT1 and the drug transporter P-glycoprotein (P-gp) which were studied by immunofluorescence microscopy and application of respective inhibitors (2-Amino-2-norbornanecarboxylic acid (BCH) for LAT1; cyclosporine-A for P-gp). The formation of functional monolayer(s) was confirmed by increasing TEER values, low LY transfer rates, minimal inulin leakage, and appropriate expression/release of syncytialization markers. These results were supported by microscopic monitoring of monolayer formation. LAT1 was identified on the apical and basal sides of the trophoblast monolayer, while P-gp was apically localized. Transport assays confirmed the inhibition of LAT1 by BCH, reducing both intracellular leucine levels and leucine transport to the basal compartment. Inhibiting P-gp with cyclosporine-A increased intracellular Rhodamine-123 concentrations. Our in vitro model mimics key aspects of the human placental barrier. It represents a powerful tool to study nutrient and drug transport mechanisms across the placenta, assisting in evaluating safer pregnancy therapies.
胎盘在母婴营养转运和胎儿对药物的保护中起着关键作用。创建用于研究这些过程的生理体外模型至关重要,但技术上具有挑战性。本研究通过在基于 Transwell 的系统上共培养原代滋养层细胞和原代人脐静脉内皮细胞 (HUVEC) ,介绍了一种有效的细胞模型,可模拟人胎盘屏障。通过测定跨上皮电阻 (TEER)、荧光素黄 (LY) 和菊粉的通透性、滋养层细胞膜上转运蛋白的定位 (免疫荧光) 和合体化标志物 (RT-qPCR/ELISA) ,在 7 天内检查单层形成情况。我们分析了扩散 (咖啡因/安替比林) 和转运 (亮氨酸/罗丹明-123) 过程,以研究生理相关化合物的转运。后者依赖于氨基酸转运蛋白 LAT1 和药物转运蛋白 P-糖蛋白 (P-gp) 的适当定位和功能,通过免疫荧光显微镜和相应抑制剂的应用 (LAT1 的 2-氨基-2-降冰片烷羧酸 (BCH) ;P-gp 的环孢素 A) 进行研究。功能性单层 (s) 的形成通过增加 TEER 值、低 LY 转移率、最小菊粉渗漏以及合体化标志物的适当表达/释放得到证实。这些结果得到了单层形成的微观监测的支持。LAT1 被鉴定为滋养层单层的顶端和基底侧,而 P-gp 则位于顶端。转运试验证实 BCH 抑制 LAT1,减少细胞内亮氨酸水平和亮氨酸向基底隔室的转运。用环孢素 A 抑制 P-gp 增加细胞内罗丹明-123 浓度。我们的体外模型模拟了人胎盘屏障的关键方面。它是研究营养物质和药物通过胎盘转运机制的有力工具,有助于评估更安全的妊娠治疗方法。