Suppr超能文献

微生物汞甲基化的共代谢途径。

Syntrophic pathways for microbial mercury methylation.

机构信息

Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA.

Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.

出版信息

ISME J. 2018 Jun;12(7):1826-1835. doi: 10.1038/s41396-018-0106-0. Epub 2018 Mar 29.

Abstract

Exposure to dietary sources of methylmercury (MeHg) is the focus of public health concerns with environmental mercury (Hg) contamination. MeHg is formed in anoxic environments by anaerobic microorganisms. This process has been studied mostly with single-species culture incubations, although the relevance of such studies to Hg(II)-methylation in situ is limited because microbial activities in the environment are critically modulated by interactions among microbial functional groups. Here we describe experiments in which Hg(II)-methylation was examined within the context of various microbial syntrophies. We show enhanced Hg(II)-methylation under conditions that established syntrophy by interspecies hydrogen and acetate transfer. Relative to activity of monocultures, interactions of Hg(II) methylating sulfate-reducing bacteria with a methanogen stimulated potential Hg(II)-methylation rates 2-fold to 9-fold, and with Syntrophobacter sp. 1.7-fold to 1.8-fold; those of a Hg(II) methylating Syntrophobacter sp. with a methanogen increased Hg(II)-methylation 2-fold. Under sulfate-depleted conditions, higher Hg(II)-methylation rates in the syntrophic incubations corresponded to higher free energy yields (ΔG°') than in the monocultures. Based on energetic considerations, we therefore propose that syntrophic microbial interactions are likely a major source of MeHg in sulfate- and iron-limited anoxic environments while in sulfate-replete environments, MeHg formation via sulfate reduction dominates.

摘要

暴露于饮食来源的甲基汞(MeHg)是公众关注的环境汞(Hg)污染的焦点。在缺氧环境中,由厌氧微生物形成 MeHg。虽然此类研究对于原位 Hg(II)甲基化的相关性有限,因为环境中的微生物活性受到微生物功能群相互作用的严重调节,但该过程主要通过单一物种培养物孵育进行研究。在这里,我们描述了在各种微生物共生体背景下检查 Hg(II)甲基化的实验。我们表明,在通过种间氢和乙酸转移建立共生关系的条件下,Hg(II)甲基化增强。与单培养物的活性相比,硫酸盐还原菌与产甲烷菌的相互作用刺激潜在的 Hg(II)甲基化速率增加 2 倍至 9 倍,与 Syntrophobacter sp. 增加 1.7 倍至 1.8 倍;Hg(II)甲基化的 Syntrophobacter sp. 与产甲烷菌的相互作用将 Hg(II)甲基化增加了 2 倍。在硫酸盐耗尽的条件下,共生培养物中的 Hg(II)甲基化率较高,对应的自由能产率(ΔG°')高于单培养物。因此,根据能量考虑,我们提出在硫酸盐和铁限制的缺氧环境中,共生微生物相互作用可能是 MeHg 的主要来源,而在硫酸盐充足的环境中,硫酸盐还原主导 MeHg 的形成。

相似文献

1
Syntrophic pathways for microbial mercury methylation.微生物汞甲基化的共代谢途径。
ISME J. 2018 Jun;12(7):1826-1835. doi: 10.1038/s41396-018-0106-0. Epub 2018 Mar 29.

引用本文的文献

2
Recent advance of microbial mercury methylation in the environment.环境中微生物汞甲基化的最新进展。
Appl Microbiol Biotechnol. 2024 Feb 26;108(1):235. doi: 10.1007/s00253-023-12967-6.

本文引用的文献

2
Extracellular electron transfer mechanisms between microorganisms and minerals.微生物与矿物之间的胞外电子传递机制。
Nat Rev Microbiol. 2016 Oct;14(10):651-62. doi: 10.1038/nrmicro.2016.93. Epub 2016 Aug 30.
4
A stable genetic polymorphism underpinning microbial syntrophy.一种支撑微生物互养的稳定遗传多态性。
ISME J. 2016 Dec;10(12):2844-2853. doi: 10.1038/ismej.2016.80. Epub 2016 Jun 3.
6
Mercury methylation by novel microorganisms from new environments.新型环境中新型微生物的汞甲基化作用。
Environ Sci Technol. 2013 Oct 15;47(20):11810-20. doi: 10.1021/es403075t. Epub 2013 Sep 26.
7
Mercury methylation by the methanogen Methanospirillum hungatei.产甲烷菌 Methanospirillum hungatei 进行的汞甲基化。
Appl Environ Microbiol. 2013 Oct;79(20):6325-30. doi: 10.1128/AEM.01556-13. Epub 2013 Aug 9.
8
Microbial syntrophy: interaction for the common good.微生物共生:为共同利益而相互作用。
FEMS Microbiol Rev. 2013 May;37(3):384-406. doi: 10.1111/1574-6976.12019.
9
The genetic basis for bacterial mercury methylation.细菌汞甲基化的遗传基础。
Science. 2013 Mar 15;339(6125):1332-5. doi: 10.1126/science.1230667. Epub 2013 Feb 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验