Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA.
Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.
ISME J. 2018 Jun;12(7):1826-1835. doi: 10.1038/s41396-018-0106-0. Epub 2018 Mar 29.
Exposure to dietary sources of methylmercury (MeHg) is the focus of public health concerns with environmental mercury (Hg) contamination. MeHg is formed in anoxic environments by anaerobic microorganisms. This process has been studied mostly with single-species culture incubations, although the relevance of such studies to Hg(II)-methylation in situ is limited because microbial activities in the environment are critically modulated by interactions among microbial functional groups. Here we describe experiments in which Hg(II)-methylation was examined within the context of various microbial syntrophies. We show enhanced Hg(II)-methylation under conditions that established syntrophy by interspecies hydrogen and acetate transfer. Relative to activity of monocultures, interactions of Hg(II) methylating sulfate-reducing bacteria with a methanogen stimulated potential Hg(II)-methylation rates 2-fold to 9-fold, and with Syntrophobacter sp. 1.7-fold to 1.8-fold; those of a Hg(II) methylating Syntrophobacter sp. with a methanogen increased Hg(II)-methylation 2-fold. Under sulfate-depleted conditions, higher Hg(II)-methylation rates in the syntrophic incubations corresponded to higher free energy yields (ΔG°') than in the monocultures. Based on energetic considerations, we therefore propose that syntrophic microbial interactions are likely a major source of MeHg in sulfate- and iron-limited anoxic environments while in sulfate-replete environments, MeHg formation via sulfate reduction dominates.
暴露于饮食来源的甲基汞(MeHg)是公众关注的环境汞(Hg)污染的焦点。在缺氧环境中,由厌氧微生物形成 MeHg。虽然此类研究对于原位 Hg(II)甲基化的相关性有限,因为环境中的微生物活性受到微生物功能群相互作用的严重调节,但该过程主要通过单一物种培养物孵育进行研究。在这里,我们描述了在各种微生物共生体背景下检查 Hg(II)甲基化的实验。我们表明,在通过种间氢和乙酸转移建立共生关系的条件下,Hg(II)甲基化增强。与单培养物的活性相比,硫酸盐还原菌与产甲烷菌的相互作用刺激潜在的 Hg(II)甲基化速率增加 2 倍至 9 倍,与 Syntrophobacter sp. 增加 1.7 倍至 1.8 倍;Hg(II)甲基化的 Syntrophobacter sp. 与产甲烷菌的相互作用将 Hg(II)甲基化增加了 2 倍。在硫酸盐耗尽的条件下,共生培养物中的 Hg(II)甲基化率较高,对应的自由能产率(ΔG°')高于单培养物。因此,根据能量考虑,我们提出在硫酸盐和铁限制的缺氧环境中,共生微生物相互作用可能是 MeHg 的主要来源,而在硫酸盐充足的环境中,硫酸盐还原主导 MeHg 的形成。