Suppr超能文献

特定的循环 microRNAs 对耐力运动的强度和持续时间的变化表现出剂量依赖性反应。

Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise.

机构信息

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC , Pittsburgh, Pennsylvania.

Department of Human Evolutionary Biology, Harvard University , Cambridge, Massachusetts.

出版信息

Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H273-H283. doi: 10.1152/ajpheart.00741.2017. Epub 2018 Mar 30.

Abstract

Circulating microRNAs (c-miRNAs), plasma-based noncoding RNAs that control posttranscriptional gene expression, mediate processes that underlie phenotypical plasticity to exercise. The relationship and biological relevance between c-miRNA expression and variable dose exercise exposure remains uncertain. We hypothesized that certain c-miRNAs respond to changes in exercise intensity and/or duration in a dose-dependent fashion. Muscle release of such c-miRNAs may then deplete intracellular stores, thus facilitating gene reprogramming and exercise adaptation. To address these hypotheses, healthy men participated in variable intensity ( n = 12, 30 × 1 min at 6, 7, and 8 miles/h, order randomized) and variable duration ( n = 14, 7 × 1 mile/h for 30, 60, and 90 min, order randomized) treadmill-running protocols. Muscle-enriched c-miRNAs (i.e., miRNA-1 and miRNA-133a) and others with known relevance to exercise were measured before and after exercise. c-miRNA responses followed three profiles: 1) nonresponsive (miRNA-21 and miRNA-210), 2) responsive to exercise at some threshold but without dose dependence (miRNA-24 and miRNA-146a), and 3) responsive to exercise with dose dependence to increasing intensity (miRNA-1) or duration (miRNA-133a and miRNA-222). We also studied aerobic exercise-trained mice, comparing control, low-intensity (0.5 km/h), or high-intensity (1 km/h) treadmill-running protocols over 4 wk. In high- but not low-intensity-trained mice, we found increased plasma c-miR-133a along with decreased intracellular miRNA-133a and increased serum response factor, a known miR-133a target gene, in muscle. Characterization of c-miRNAs that are dose responsive to exercise in humans and mice supports the notion that they directly mediate physiological adaptation to exercise, potentially through depletion of intracellular stores of muscle-specific miRNAs. NEW & NOTEWORTHY In this study of humans and mice, we define circulating microRNAs in plasma that are dose responsive to exercise. Our data support the notion that these microRNAs mediate physiological adaptation to exercise potentially through depletion of intracellular stores of muscle-specific microRNAs and releasing their inhibitory effects on target gene expression.

摘要

循环 microRNAs(c-miRNAs)是一种控制转录后基因表达的血浆非编码 RNA,介导了表型可塑性对运动的基础过程。c-miRNA 表达与可变剂量运动暴露之间的关系和生物学相关性尚不确定。我们假设某些 c-miRNAs 以剂量依赖的方式对运动强度和/或持续时间的变化做出反应。这些 c-miRNAs 从肌肉中释放出来可能会耗尽细胞内储存,从而促进基因重编程和运动适应。为了解决这些假设,健康男性参与了可变强度(n=12,30×1 分钟,速度分别为 6、7 和 8 英里/小时,随机顺序)和可变持续时间(n=14,7×1 英里/小时,持续 30、60 和 90 分钟,随机顺序)跑步机跑步方案。运动后测量肌肉丰富的 c-miRNAs(即 miRNA-1 和 miRNA-133a)和其他与运动相关的已知 miRNA。c-miRNA 反应呈现三种模式:1)无反应(miRNA-21 和 miRNA-210),2)对某些阈值的运动有反应,但无剂量依赖性(miRNA-24 和 miRNA-146a),3)对运动有剂量依赖性,对强度(miRNA-1)或持续时间(miRNA-133a 和 miRNA-222)增加有反应。我们还研究了有氧运动训练的小鼠,比较了对照组、低强度(0.5 公里/小时)或高强度(1 公里/小时)跑步机跑步方案 4 周。在高强度而非低强度训练的小鼠中,我们发现血浆 c-miR-133a 增加,同时肌肉中细胞内 miRNA-133a 减少,血清反应因子(一种已知的 miR-133a 靶基因)增加。在人类和小鼠中,对运动剂量反应的 c-miRNAs 的特征支持这样一种观点,即它们直接介导对运动的生理适应,可能通过耗尽肌肉特异性 miRNAs 的细胞内储存。本研究在人类和小鼠中定义了对运动剂量有反应的循环 microRNAs。我们的数据支持这样一种观点,即这些 microRNAs 通过耗尽肌肉特异性 microRNAs 的细胞内储存并释放其对靶基因表达的抑制作用,介导对运动的生理适应。

相似文献

1
Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise.
Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H273-H283. doi: 10.1152/ajpheart.00741.2017. Epub 2018 Mar 30.
2
Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise.
J Appl Physiol (1985). 2014 Mar 1;116(5):522-31. doi: 10.1152/japplphysiol.01141.2013. Epub 2014 Jan 16.
3
Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training.
J Physiol. 2011 Aug 15;589(Pt 16):3983-94. doi: 10.1113/jphysiol.2011.213363. Epub 2011 Jun 20.
4
miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice.
PLoS One. 2009;4(5):e5610. doi: 10.1371/journal.pone.0005610. Epub 2009 May 19.
6
MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy.
J Appl Physiol (1985). 2007 Jan;102(1):306-13. doi: 10.1152/japplphysiol.00932.2006. Epub 2006 Sep 28.
7
A single session of EMS training induces long-lasting changes in circulating muscle but not cardiovascular miRNA levels: a randomized crossover study.
J Appl Physiol (1985). 2023 Apr 1;134(4):799-809. doi: 10.1152/japplphysiol.00557.2022. Epub 2023 Feb 9.
8
An inducible knockout of Dicer in adult mice does not affect endurance exercise-induced muscle adaptation.
Am J Physiol Cell Physiol. 2019 Feb 1;316(2):C285-C292. doi: 10.1152/ajpcell.00278.2018. Epub 2018 Dec 12.
9
Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training.
J Physiol. 2013 Sep 15;591(18):4637-53. doi: 10.1113/jphysiol.2013.255695. Epub 2013 Jun 24.

引用本文的文献

1
MicroRNAs at the crossroads of exercise and ferroptosis: a regulatory bridge.
Clin Exp Med. 2025 Jul 6;25(1):234. doi: 10.1007/s10238-025-01766-0.
2
The Human Exersome Initiative (HEI): Rationale, study design, and protocol.
PLoS One. 2025 Jun 25;20(6):e0326149. doi: 10.1371/journal.pone.0326149. eCollection 2025.
4
5
Exosomes and microRNAs as mediators of the exercise.
Eur J Med Res. 2025 Jan 19;30(1):38. doi: 10.1186/s40001-025-02273-4.
6
Acute Effects of Serial and Integrated Concurrent Exercise on Circulating microRNAs -126 and -222 in Sedentary Adults.
Int J Exerc Sci. 2024 Dec 1;17(2):1444-1460. doi: 10.70252/XFJK8005. eCollection 2024.
7
Effects of structured exercise training on miRNA expression in previously sedentary individuals.
PLoS One. 2024 Dec 18;19(12):e0314281. doi: 10.1371/journal.pone.0314281. eCollection 2024.
9
Left ventricle function and post-transcriptional events with exercise training in pigs.
PLoS One. 2024 Feb 2;19(2):e0292243. doi: 10.1371/journal.pone.0292243. eCollection 2024.
10
Non-coding RNAs in exercise immunology: A systematic review.
J Sport Health Sci. 2024 May;13(3):311-338. doi: 10.1016/j.jshs.2023.11.001. Epub 2023 Nov 3.

本文引用的文献

1
The Role of MicroRNAs in the Cardiac Response to Exercise.
Cold Spring Harb Perspect Med. 2017 Dec 1;7(12):a029850. doi: 10.1101/cshperspect.a029850.
2
Acute Effects of Different Exercise Protocols on the Circulating Vascular microRNAs -16, -21, and -126 in Trained Subjects.
Front Physiol. 2016 Dec 26;7:643. doi: 10.3389/fphys.2016.00643. eCollection 2016.
4
Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension.
J Clin Invest. 2016 Sep 1;126(9):3313-35. doi: 10.1172/JCI86387. Epub 2016 Aug 22.
5
Exercise Dose in Clinical Practice.
Circulation. 2016 Jun 7;133(23):2297-313. doi: 10.1161/CIRCULATIONAHA.116.018093.
6
Comparison of Methodologies to Detect Low Levels of Hemolysis in Serum for Accurate Assessment of Serum microRNAs.
PLoS One. 2016 Apr 7;11(4):e0153200. doi: 10.1371/journal.pone.0153200. eCollection 2016.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验