Suppr超能文献

长时间有氧运动后不同循环微RNA的快速上调和清除。

Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise.

作者信息

Baggish Aaron L, Park Joseph, Min Pil-Ki, Isaacs Stephanie, Parker Beth A, Thompson Paul D, Troyanos Chris, D'Hemecourt Pierre, Dyer Sophia, Thiel Marissa, Hale Andrew, Chan Stephen Y

机构信息

Cardiovascular Performance Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

出版信息

J Appl Physiol (1985). 2014 Mar 1;116(5):522-31. doi: 10.1152/japplphysiol.01141.2013. Epub 2014 Jan 16.

Abstract

Short nonprotein coding RNA molecules, known as microRNAs (miRNAs), are intracellular mediators of adaptive processes, including muscle hypertrophy, contractile force generation, and inflammation. During basal conditions and tissue injury, miRNAs are released into the bloodstream as "circulating" miRNAs (c-miRNAs). To date, the impact of extended-duration, submaximal aerobic exercise on plasma concentrations of c-miRNAs remains incompletely characterized. We hypothesized that specific c-miRNAs are differentially upregulated following prolonged aerobic exercise. To test this hypothesis, we measured concentrations of c-miRNAs enriched in muscle (miR-1, miR-133a, miR-499-5p), cardiac tissue (miR-208a), and the vascular endothelium (miR-126), as well as those important in inflammation (miR-146a) in healthy male marathon runners (N = 21) at rest, immediately after a marathon (42-km foot race), and 24 h after the race. In addition, we compared c-miRNA profiles to those of conventional protein biomarkers reflective of skeletal muscle damage, cardiac stress and necrosis, and systemic inflammation. Candidate c-miRNAs increased immediately after the marathon and declined to prerace levels or lower after 24 h of race completion. However, the magnitude of change for each c-miRNA differed, even when originating from the same tissue type. In contrast, traditional biomarkers increased after exercise but remained elevated 24 h postexercise. Thus c-miRNAs respond differentially to prolonged exercise, suggesting the existence of specific mechanisms of c-miRNA release and clearance not fully explained by generalized cellular injury. Furthermore, c-miRNA expression patterns differ in a temporal fashion from corollary conventional tissue-specific biomarkers, emphasizing the potential of c-miRNAs as unique, real-time markers of exercise-induced tissue adaptation.

摘要

短链非蛋白质编码RNA分子,即微小RNA(miRNA),是适应性过程的细胞内介质,包括肌肉肥大、收缩力产生和炎症。在基础状态和组织损伤期间,miRNA作为“循环”miRNA(c-miRNA)释放到血液中。迄今为止,长时间、次最大强度有氧运动对c-miRNA血浆浓度的影响仍未完全明确。我们假设,长时间有氧运动后特定的c-miRNA会有不同程度的上调。为了验证这一假设,我们测量了健康男性马拉松运动员(N = 21)在静息状态、马拉松比赛(42公里赛跑)后即刻以及比赛后24小时时,肌肉(miR-1、miR-133a、miR-499-5p)、心脏组织(miR-208a)、血管内皮(miR-126)中富集的c-miRNA浓度,以及在炎症中起重要作用的c-miRNA(miR-146a)浓度。此外,我们将c-miRNA谱与反映骨骼肌损伤、心脏应激和坏死以及全身炎症的传统蛋白质生物标志物的谱进行了比较。候选c-miRNA在马拉松比赛后即刻增加,在比赛结束24小时后降至赛前水平或更低。然而,即使来自相同组织类型,每种c-miRNA的变化幅度也有所不同。相比之下,传统生物标志物在运动后增加,但在运动后24小时仍保持升高。因此,c-miRNA对长时间运动的反应存在差异,这表明存在c-miRNA释放和清除的特定机制,而广义的细胞损伤并不能完全解释这些机制。此外,c-miRNA的表达模式在时间上与相应的传统组织特异性生物标志物不同,这突出了c-miRNA作为运动诱导组织适应的独特实时标志物的潜力。

相似文献

1
Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise.
J Appl Physiol (1985). 2014 Mar 1;116(5):522-31. doi: 10.1152/japplphysiol.01141.2013. Epub 2014 Jan 16.
2
Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise.
Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H273-H283. doi: 10.1152/ajpheart.00741.2017. Epub 2018 Mar 30.
3
Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise.
J Appl Physiol (1985). 2016 Mar 15;120(6):711-20. doi: 10.1152/japplphysiol.00654.2015. Epub 2015 Oct 15.
4
Circulating microRNAs after a 24-h ultramarathon run in relation to muscle damage markers in elite athletes.
Scand J Med Sci Sports. 2021 Sep;31(9):1782-1795. doi: 10.1111/sms.14000. Epub 2021 Jun 7.
5
Circulating microRNAs as potential biomarkers of aerobic exercise capacity.
Am J Physiol Heart Circ Physiol. 2014 Feb 15;306(4):H557-63. doi: 10.1152/ajpheart.00711.2013. Epub 2013 Dec 20.
6
Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training.
J Physiol. 2011 Aug 15;589(Pt 16):3983-94. doi: 10.1113/jphysiol.2011.213363. Epub 2011 Jun 20.
8
Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise.
Int J Cardiol. 2018 Aug 1;264:130-136. doi: 10.1016/j.ijcard.2018.02.092.
9
Exercise dose affects the circulating microRNA profile in response to acute endurance exercise in male amateur runners.
Scand J Med Sci Sports. 2020 Oct;30(10):1896-1907. doi: 10.1111/sms.13759. Epub 2020 Jul 23.

引用本文的文献

1
Molecular mechanism of aerobic exercise in miRNAs and the anti-tumoral effects.
Front Oncol. 2025 Aug 13;15:1595982. doi: 10.3389/fonc.2025.1595982. eCollection 2025.
2
The Human Exersome Initiative (HEI): Rationale, study design, and protocol.
PLoS One. 2025 Jun 25;20(6):e0326149. doi: 10.1371/journal.pone.0326149. eCollection 2025.
4
Physical exercise and epigenetic modifications in skeletal muscle, brain, and heart.
Epigenetics Chromatin. 2025 Mar 21;18(1):12. doi: 10.1186/s13072-025-00576-8.
6
Exercise in Diabetic Cardiomyopathy: Its Protective Effects and Molecular Mechanism.
Int J Mol Sci. 2025 Feb 10;26(4):1465. doi: 10.3390/ijms26041465.
7
Acute Effects of Serial and Integrated Concurrent Exercise on Circulating microRNAs -126 and -222 in Sedentary Adults.
Int J Exerc Sci. 2024 Dec 1;17(2):1444-1460. doi: 10.70252/XFJK8005. eCollection 2024.
8
Effects of structured exercise training on miRNA expression in previously sedentary individuals.
PLoS One. 2024 Dec 18;19(12):e0314281. doi: 10.1371/journal.pone.0314281. eCollection 2024.
10
Atrial Fibrillation in Endurance Training Athletes: Scoping Review.
Rev Cardiovasc Med. 2023 May 26;24(6):155. doi: 10.31083/j.rcm2406155. eCollection 2023 Jun.

本文引用的文献

1
Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis.
Int J Sports Med. 2014 Apr;35(4):344-50. doi: 10.1055/s-0033-1349075. Epub 2013 Sep 10.
2
Changes in circulating microRNAs levels with exercise modality.
J Appl Physiol (1985). 2013 Nov 1;115(9):1237-44. doi: 10.1152/japplphysiol.00075.2013. Epub 2013 Aug 15.
3
Profiling of circulating microRNAs after a bout of acute resistance exercise in humans.
PLoS One. 2013 Jul 29;8(7):e70823. doi: 10.1371/journal.pone.0070823. Print 2013.
5
A pilot study of muscle plasma protein changes after exercise.
Muscle Nerve. 2014 Feb;49(2):261-6. doi: 10.1002/mus.23909. Epub 2013 Aug 30.
7
Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.
J Clin Invest. 2013 Jun;123(6):2564-75. doi: 10.1172/JCI67652. Epub 2013 May 8.
8
Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men.
Front Physiol. 2013 Apr 11;4:80. doi: 10.3389/fphys.2013.00080. eCollection 2013.
9
Circulating miRNAs: novel biomarkers of acute coronary syndrome?
Biomark Med. 2013 Apr;7(2):287-305. doi: 10.2217/bmm.13.8.
10
Circulating microRNAs and aerobic fitness--the HUNT-Study.
PLoS One. 2013;8(2):e57496. doi: 10.1371/journal.pone.0057496. Epub 2013 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验