Constantinou Marios, Nikolaou Petros, Koutsokeras Loukas, Avgeropoulos Apostolos, Moschovas Dimitrios, Varotsis Constantinos, Patsalas Panos, Kelires Pantelis, Constantinides Georgios
Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3041 Lemesos, Cyprus.
Department of Materials Science and Engineering, University of Ioannina, University Campus, 45110 Ioannina, Greece.
Nanomaterials (Basel). 2018 Mar 30;8(4):209. doi: 10.3390/nano8040209.
This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.
本研究旨在开发具有可控尺寸和浓度的嵌入金属纳米颗粒的氢化非晶碳薄膜(a-C:H:Me)。为此,提出了一种新型混合沉积系统,该系统结合了等离子体增强化学气相沉积(PECVD)和物理气相沉积(PVD)技术。a-C:H基质是通过射频(RF)等离子体源裂解甲烷产生的碳离子加速沉积而成,而金属纳米颗粒则采用终端气体冷凝(TGC)技术生成并沉积。所得材料是一种具有可控物理性质且金属纳米颗粒(此处为Ag或Ti)均匀分散的氢化非晶碳薄膜。通过X射线反射率(XRR)、拉曼光谱、扫描电子显微镜(SEM)、原子力显微镜(AFM)、透射电子显微镜(TEM)和纳米划痕测试对薄膜的物理、化学、形态和力学特性进行了研究。所得的非晶碳金属纳米复合薄膜(a-C:H:Ag和a-C:H:Ti)表现出增强的纳米划痕抗性(高达+50%)和低摩擦系数值(<0.05),这些特性对于防护涂层和/或固体润滑剂应用来说是理想的。通过潜在地控制碳键合、氢含量以及金属纳米颗粒的类型/尺寸/百分比来形成具有可调涂层性能的纳米复合结构的能力,为广泛的需要机械、物理、生物和/或组合性能的应用开辟了新途径。