Marrazzo Antimo, Gibertini Marco, Campi Davide, Mounet Nicolas, Marzari Nicola
Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Phys Rev Lett. 2018 Mar 16;120(11):117701. doi: 10.1103/PhysRevLett.120.117701.
Fundamental research and technological applications of topological insulators are hindered by the rarity of materials exhibiting a robust topologically nontrivial phase, especially in two dimensions. Here, by means of extensive first-principles calculations, we propose a novel quantum spin Hall insulator with a sizable band gap of ∼0.5 eV that is a monolayer of jacutingaite, a naturally occurring layered mineral first discovered in 2008 in Brazil and recently synthesized. This system realizes the paradigmatic Kane-Mele model for quantum spin Hall insulators in a potentially exfoliable two-dimensional monolayer, with helical edge states that are robust and that can be manipulated exploiting a unique strong interplay between spin-orbit coupling, crystal-symmetry breaking, and dielectric response.
拓扑绝缘体的基础研究和技术应用受到具有稳健拓扑非平凡相的材料稀缺性的阻碍,尤其是在二维材料中。在此,通过广泛的第一性原理计算,我们提出了一种新型量子自旋霍尔绝缘体,其具有约0.5电子伏特的可观带隙,它是单层的雅库廷加石,这是一种天然存在的层状矿物,于2008年首次在巴西发现,最近已被合成。该系统在一个潜在可剥离的二维单层中实现了量子自旋霍尔绝缘体的典型凯恩 - 梅勒模型,具有稳健的螺旋边缘态,并且可以利用自旋 - 轨道耦合、晶体对称性破缺和介电响应之间独特的强相互作用来进行操控。