Molecular and Cellular Biophysics, University of Denver, Denver, Colorado 80208, USA and Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208, USA.
J Chem Phys. 2018 Mar 28;148(12):123305. doi: 10.1063/1.5005821.
We present an analytical theory to compute conformations of heteropolymers-applicable to describe disordered proteins-as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence-while maintaining the same charge composition-can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high-throughput level can provide valuable insights into the different mechanisms by which phosphorylation/charge mutation controls IDP function.
我们提出了一种分析理论,可将杂聚物的构象(适用于描述无序蛋白质)作为温度和电荷序列的函数进行计算。该理论描述了在给定蛋白质序列下随温度变化的无规卷曲-球粒转变,并且已经与使用 CAMPARI 的无序蛋白质(IDP)的全原子蒙特卡罗模拟进行了基准测试。此外,该模型定量地展示了在保持相同电荷组成的情况下,在一级序列中电荷位置的细微改变如何导致构象发生显著变化,甚至可以从无规卷曲(高于纯无规卷曲)转变为球粒(低于无规卷曲),反之亦然。该理论提供了有关如何通过调节温度(或溶液条件)和电荷修饰来控制(增强或抑制)这些变化的见解。作为应用,我们预测了 DisProt 数据库中所有天然存在的 IDP 的构象分布(在室温下),并且即使在具有相似正负电荷组成的 IDP 之间也注意到了显著的大小变化。基于此,我们提供了一个新的状态图,用于描绘 DisProt 数据库中蛋白质的序列-构象关系。接下来,我们研究了翻译后修饰(例如磷酸化)对 IDP 构象的影响。即使在其他条件(温度、盐浓度等)不变的情况下,两个位点的磷酸化修饰也可以显著改变 IDP 的大小。然而,并非所有可能的修饰位点对蛋白质构象都有相同的影响;存在某些“热点”,可以导致构象发生最大变化。这些“热点”在原始序列中的位置可以通过最初由 Sawle 和 Ghosh 引入的序列电荷修饰度量来轻松识别。我们的模型预测 IDP 构象(扩展和收缩状态)的高通量能力可以为磷酸化/电荷突变控制 IDP 功能的不同机制提供有价值的见解。