Department of Nuclear Medicine, Hannover Medical School; Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School; Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden; Department of Pharmaceutical Radiochemistry, Technical University of Munich, Garching.
Dtsch Arztebl Int. 2018 Mar 16;115(11):175-181. doi: 10.3238/arztebl.2018.0175.
Anatomical and molecular data can be acquired simultaneously through the use of positron emission tomography (PET) in combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a hybrid technique. A variety of radiopharmaceuticals can be used to characterize various metabolic processes or to visualize the expression of receptors, enzymes, and other molecular target structures.
This review is based on pertinent publications retrieved by a selective search in PubMed, as well as on guidelines from Germany and abroad and on systematic reviews and meta-analyses.
Established radiopharmaceuticals for PET, such as 2-[18F]fluoro-2- deoxyglucose ([18F]FDG), enable the visualization of physiological processes on the molecular level and can provide vital information for clinical decision-making. For example, PET can be used to evaluate pulmonary nodules for malignancy with 95% sensitivity and 82% specificity. It can be used both for initial staging and for the guidance of further treatment. Alongside the PET radiopharmaceuticals that have already been well studied and evaluated, newer ones are increasingly becoming available for the noninvasive phenotyping of tumor diseases, e.g., for analyzing the expression of prostate-specific membrane antigen (PSMA), of somatostatin receptors, or of chemokine receptors on tumor cells.
PET is an important component of diagnostic algorithms in oncology. It can help make diagnosis more precise and treatment more individualized. An increasing number of PET radiopharmaceuticals are now expanding the available options for imaging. Many radiopharmaceuticals can be used not only for noninvasive analysis of the expression of therapeutically relevant target structures, but also for the ensuing, target-directed treatment with radionuclides.
通过正电子发射断层扫描(PET)与计算机断层扫描(CT)或磁共振成像(MRI)相结合作为混合技术,可以同时获取解剖学和分子数据。可以使用各种放射性药物来描述各种代谢过程或可视化受体、酶和其他分子靶结构的表达。
本综述基于在 PubMed 中进行的选择性搜索中检索到的相关出版物,以及德国和国外的指南以及系统评价和荟萃分析。
用于 PET 的已建立的放射性药物,如 2-[18F]氟-2-脱氧葡萄糖([18F]FDG),能够在分子水平上可视化生理过程,并为临床决策提供重要信息。例如,PET 可用于评估肺结节的恶性肿瘤,其灵敏度为 95%,特异性为 82%。它既可以用于初始分期,也可以用于指导进一步治疗。除了已经经过充分研究和评估的 PET 放射性药物外,越来越多的新型放射性药物可用于肿瘤疾病的非侵入性表型分析,例如分析前列腺特异性膜抗原(PSMA)、生长抑素受体或肿瘤细胞趋化因子受体的表达。
PET 是肿瘤诊断算法的重要组成部分。它可以帮助更精确地诊断和更个体化地治疗。越来越多的 PET 放射性药物正在扩大成像的选择范围。许多放射性药物不仅可用于非侵入性分析治疗相关靶结构的表达,还可用于随后用放射性核素进行靶向治疗。