Suppr超能文献

使用深度卷积神经网络对术后 CTA 图像中的腹部主动脉血栓进行全自动检测和分割。

Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using Deep Convolutional Neural Networks.

机构信息

Vicomtech Foundation, San Sebastián, Spain; Biodonostia Health Research Institute, San Sebastián, Spain; Universitat Pompeu Fabra, Barcelona, Spain.

Vicomtech Foundation, San Sebastián, Spain.

出版信息

Med Image Anal. 2018 May;46:202-214. doi: 10.1016/j.media.2018.03.010. Epub 2018 Mar 27.

Abstract

Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases.

摘要

计算机断层血管造影(CTA)是评估腹主动脉瘤(AAA)患者血管内修复(EVAR)术后进展和检测并发症的重要手段。在此背景下,需要对术后血栓体积进行准确的定量评估。然而,由于缺乏自动、稳健和可重复的血栓分割算法,因此对术后血栓的准确评估受到了阻碍。我们提出了一种新的基于深度卷积神经网络(DCNN)的全自动方法,用于稳健和可重复的感兴趣区血栓检测以及随后的精细血栓分割。DetecNet 检测网络被用于从完整的 CTA 中提取感兴趣区,并且提出了一种新的基于全卷积网络和整体嵌套边缘检测网络的分割网络架构。这些网络在 13 个不同患者的术后 CTA 体积中进行了训练、验证和测试,采用 4 倍交叉验证方法以提高结果的稳健性。我们的方法在术后血栓分割方面取得了超过 82%的 Dice 评分,并在大多数常见情况下,在无需人工干预的情况下,提供了自动分割与真实分割之间的平均相对体积差异,该差异在有经验的人类观察者的变异性范围内。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验