Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931, USA.
Mayo Clinic, Rochester, MN, 55902, USA.
Comput Biol Med. 2023 May;158:106569. doi: 10.1016/j.compbiomed.2023.106569. Epub 2023 Jan 23.
We delineate abdominal aortic aneurysms, including lumen and intraluminal thrombosis (ILT), from contrast-enhanced computed tomography angiography (CTA) data in 70 patients with complete automation. A novel context-aware cascaded U-Net configuration enables automated image segmentation. Notably, auto-context structure, in conjunction with dilated convolutions, anisotropic context module, hierarchical supervision, and a multi-class loss function, are proposed to improve the delineation of ILT in an unbalanced, low-contrast multi-class labeling problem. A quantitative analysis shows that the automated image segmentation produces comparable results with trained human users (e.g., DICE scores of 0.945 and 0.804 for lumen and ILT, respectively). Resultant morphological metrics (e.g., volume, surface area, etc.) are highly correlated to those parameters generated by trained human users. In conclusion, the proposed automated multi-class image segmentation tool has the potential to be further developed as a translational software tool that can be used to improve the clinical management of AAAs.
我们从 70 名患者的对比增强计算机断层血管造影(CTA)数据中自动描绘出了腹主动脉瘤,包括管腔和管腔内血栓(ILT)。一种新颖的上下文感知级联 U-Net 结构可实现自动图像分割。值得注意的是,自动上下文结构,结合扩张卷积、各向异性上下文模块、分层监督和多类损失函数,旨在解决不平衡、低对比度多类标记问题中 ILT 分割的问题。定量分析表明,自动图像分割的结果与经过训练的人类用户的结果相当(例如,管腔和 ILT 的 DICE 评分分别为 0.945 和 0.804)。生成的形态学指标(例如体积、表面积等)与经过训练的人类用户生成的参数高度相关。总之,所提出的自动多类图像分割工具具有进一步发展成为可用于改善 AAA 临床管理的转化软件工具的潜力。