Suppr超能文献

光热诱导微泡的马兰戈尼力驱动操控

Marangoni force-driven manipulation of photothermally-induced microbubbles.

作者信息

Ortega-Mendoza J G, Sarabia-Alonso J A, Zaca-Morán P, Padilla-Vivanco A, Toxqui-Quitl C, Rivas-Cambero I, Ramirez-Ramirez J, Torres-Hurtado S A, Ramos-García R

出版信息

Opt Express. 2018 Mar 19;26(6):6653-6662. doi: 10.1364/OE.26.006653.

Abstract

The generation and manipulation of microbubbles by means of temperature gradients induced by low power laser radiation is presented. A laser beam (λ = 1064 nm) is divided into two equal parts and coupled to two multimode optical fibers. The opposite ends of each fiber are aligned and separated a distance D within an ethanol solution. Previously, silver nanoparticles were photo deposited on the optical fibers ends. Light absorption at the nanoparticles produces a thermal gradient capable of generating a microbubble at the optical fibers end in non-absorbent liquids. The theoretical and experimental studies carried out showed that by switching the thermal gradients, it is possible to generate forces in opposite directions, causing the migration of microbubbles from one fiber optic tip to another. Marangoni force induced by surface tension gradients in the bubble wall is the driving force behind the manipulation of microbubbles. We estimated a maximum Marangoni force of 400nN for a microbubble with a radius of 110 μm.

摘要

介绍了通过低功率激光辐射诱导的温度梯度来产生和操控微气泡的方法。一束激光(λ = 1064 nm)被分成两等份,并耦合到两根多模光纤上。每根光纤的相对端在乙醇溶液中对齐并相隔距离D。此前,银纳米颗粒被光沉积在光纤末端。纳米颗粒处的光吸收产生一个热梯度,能够在非吸收性液体中的光纤末端产生微气泡。进行的理论和实验研究表明,通过切换热梯度,可以产生相反方向的力,导致微气泡从一个光纤尖端迁移到另一个光纤尖端。气泡壁中表面张力梯度诱导的马兰戈尼力是操控微气泡背后的驱动力。对于半径为110μm的微气泡,我们估计最大马兰戈尼力为400nN。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验