Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M, Germany.
Sci Rep. 2018 Apr 3;8(1):5507. doi: 10.1038/s41598-018-23818-0.
With continuing advances in the resolving power of super-resolution microscopy, the inefficient labeling of proteins with suitable fluorophores becomes a limiting factor. For example, the low labeling density achieved with antibodies or small molecule tags limits attempts to reveal local protein nano-architecture of cellular compartments. On the other hand, high laser intensities cause photobleaching within and nearby an imaged region, thereby further reducing labeling density and impairing multi-plane whole-cell 3D super-resolution imaging. Here, we show that both labeling density and photobleaching can be addressed by repetitive application of trisNTA-fluorophore conjugates reversibly binding to a histidine-tagged protein by a novel approach called single-epitope repetitive imaging (SERI). For single-plane super-resolution microscopy, we demonstrate that, after multiple rounds of labeling and imaging, the signal density is increased. Using the same approach of repetitive imaging, washing and re-labeling, we demonstrate whole-cell 3D super-resolution imaging compensated for photobleaching above or below the imaging plane. This proof-of-principle study demonstrates that repetitive labeling of histidine-tagged proteins provides a versatile solution to break the 'labeling barrier' and to bypass photobleaching in multi-plane, whole-cell 3D experiments.
随着超分辨率显微镜分辨率的不断提高,用合适的荧光染料对蛋白质进行低效标记成为一个限制因素。例如,抗体或小分子标签的低标记密度限制了试图揭示细胞区室的局部蛋白质纳米结构的尝试。另一方面,高强度的激光会导致成像区域内和附近的光漂白,从而进一步降低标记密度,并损害多平面全细胞 3D 超分辨率成像。在这里,我们通过一种称为单表位重复成像(SERI)的新方法,证明了通过重复应用可与组氨酸标记蛋白可逆结合的 trisNTA-荧光染料缀合物,可以解决标记密度和光漂白的问题。对于单平面超分辨率显微镜,我们证明,在多次标记和成像后,信号密度增加。使用重复成像、洗涤和重新标记的相同方法,我们证明了在成像平面上方或下方的全细胞 3D 超分辨率成像可以补偿光漂白。这项原理验证研究表明,重复标记组氨酸标记蛋白为突破“标记障碍”和绕过多平面全细胞 3D 实验中的光漂白提供了一种通用的解决方案。