Suppr超能文献

四重突变使腺苷 A 受体在活性状态下热稳定性增强的物理起源。

Physical Origin of Thermostabilization by a Quadruple Mutation for the Adenosine A Receptor in the Active State.

机构信息

Graduate School of Energy Science , Kyoto University , Uji, Kyoto 611-0011 , Japan.

Graduate School of Science , Chiba University , 1-33 Yayoi-cho , Inage, Chiba 263-8522 , Japan.

出版信息

J Phys Chem B. 2018 Apr 26;122(16):4418-4427. doi: 10.1021/acs.jpcb.8b00443. Epub 2018 Apr 13.

Abstract

The G protein-coupled receptors (GPCRs) form a large, physiologically important family of membrane proteins and are currently the most attractive targets for drug discovery. We investigate the physical origin of thermostabilization of the adenosine A receptor (AR) in the active state, which was experimentally achieved by another research group using the four point mutations: L48A, A54L, T65A, and Q89A. The investigation is performed on the basis of our recently developed physics-based free-energy function (FEF), which has been quite successful for the thermodynamics of GPCRs in the inactive state. The experimental condition for solving the wild-type and mutant crystal structures was substantially different from that for comparing their thermostabilities. Therefore, all-atom molecular dynamics simulations are necessitated, which also allows us to account for the structural fluctuations of the membrane protein. We show that the quadruple mutation leads to the enlargement of the solvent-entropy gain upon protein folding. The solvent is formed by hydrocarbon groups constituting nonpolar chains within the lipid bilayer, and the entropy is relevant to the thermal motion of the hydrocarbon groups. From an energetic point of view (e.g., in terms of protein intramolecular hydrogen bonds), the mutation confers no improvement upon the structural stability of AR. The reliability of our FEF and the crucial importance of the solvent-entropy effect have thus been demonstrated for a GPCR in the active state. We are now ready to identify thermostabilizing mutations of GPCRs not only in the inactive state but also in the active one.

摘要

G 蛋白偶联受体(GPCRs)是一大类具有重要生理功能的膜蛋白,目前是药物发现最具吸引力的靶点。我们研究了腺苷 A 受体(AR)在活性状态下热稳定性的物理起源,这一实验结果是由另一个研究小组通过四个点突变实现的:L48A、A54L、T65A 和 Q89A。这项研究是基于我们最近开发的基于物理的自由能函数(FEF)进行的,该函数在 GPCR 非活性状态的热力学中取得了相当大的成功。解决野生型和突变体晶体结构的实验条件与比较它们热稳定性的实验条件有很大的不同。因此,需要进行全原子分子动力学模拟,这也使我们能够考虑膜蛋白的结构波动。我们表明,四重突变导致蛋白质折叠时溶剂熵增益增大。溶剂由构成脂质双层中非极性链的碳氢基团组成,熵与碳氢基团的热运动有关。从能量的角度来看(例如,就蛋白质分子内氢键而言),该突变对 AR 的结构稳定性没有改善。因此,我们的 FEF 的可靠性和溶剂熵效应的关键重要性已经在活性状态下的 GPCR 中得到了证明。我们现在已经准备好不仅在非活性状态,而且在活性状态下识别 GPCR 的热稳定突变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验