Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
Structure. 2019 Apr 2;27(4):703-712.e3. doi: 10.1016/j.str.2018.12.007. Epub 2019 Jan 31.
Agonist binding in the extracellular region of the G protein-coupled adenosine A2A receptor increases its affinity to the G proteins in the intracellular region, and vice versa. The structural basis for this effect is not evident from the crystal structures of AR in various conformational states since it stems from the receptor dynamics. Using atomistic molecular dynamics simulations on four different conformational states of the adenosine A receptor, we observed that the agonists show decreased ligand mobility, lower entropy of the extracellular loops in the active-intermediate state compared with the inactive state. In contrast, the entropy of the intracellular region increases to prime the receptor for coupling the G protein. Coupling of the G protein to AR shrinks the agonist binding site, making tighter receptor agonist contacts with an increase in the strength of allosteric communication compared with the active-intermediate state. These insights provide a strong basis for structure-based ligand design studies.
激动剂与 G 蛋白偶联腺苷 A2A 受体细胞外区域的结合增加了其与细胞内区域中 G 蛋白的亲和力,反之亦然。由于这种效应源于受体动力学,因此从不同构象状态的 AR 的晶体结构中无法明显看出这种效应的结构基础。使用四种不同构象状态的腺苷 A 受体的原子分子动力学模拟,我们观察到激动剂表现出较低的配体迁移率,与非活性状态相比,活性中间状态的细胞外环的熵降低。相比之下,细胞内区域的熵增加,为 G 蛋白偶联受体做好准备。G 蛋白与 AR 的偶联会缩小激动剂结合位点,与活性中间状态相比,增加了变构通讯的强度,从而使受体激动剂之间的接触更加紧密。这些见解为基于结构的配体设计研究提供了坚实的基础。