J Phys Chem B. 2018 Apr 26;122(16):4521-4536. doi: 10.1021/acs.jpcb.8b01837. Epub 2018 Apr 16.
Alzheimer's disease (AD) is a neurodegenerative disorder that lacks effective treatment options. Anti-amyloid beta (Aβ) antibodies are the leading drug candidates to treat AD, but the results of clinical trials have been disappointing. Introducing rational mutations into anti-Aβ antibodies to increase their effectiveness is a way forward, but the path to take is unclear. In this study, we demonstrate the use of computational fragment-based docking and MMPBSA binding free energy calculations in the analysis of anti-Aβ antibodies for rational drug design efforts. Our fragment-based docking method successfully predicts the emergence of the common EFRH epitope. MD simulations coupled with MMPBSA binding free energy calculations are used to analyze scenarios described in prior studies, and we computationally introduce rational mutations into PFA1 to predict mutations that can improve its binding affinity toward the pE3-Aβ form of Aβ. Two out of our four proposed mutations are predicted to stabilize binding. Our study demonstrates that a computational approach may lead to an improved drug candidate for AD in the future.
阿尔茨海默病(AD)是一种神经退行性疾病,目前缺乏有效的治疗方法。抗β淀粉样蛋白(Aβ)抗体是治疗 AD 的主要候选药物,但临床试验的结果令人失望。为了提高其有效性,向抗 Aβ 抗体中引入合理的突变是一种方法,但具体的途径尚不清楚。在这项研究中,我们展示了计算基于片段的对接和 MMPBSA 结合自由能计算在分析用于合理药物设计的抗 Aβ 抗体中的应用。我们的基于片段的对接方法成功预测了常见的 EFRH 表位的出现。使用 MD 模拟和 MMPBSA 结合自由能计算来分析先前研究中描述的情况,我们通过计算将合理的突变引入 PFA1 中,以预测可以提高其与 Aβ 的 pE3-Aβ 形式结合亲和力的突变。我们提出的四个突变中有两个被预测可以稳定结合。我们的研究表明,未来一种计算方法可能会导致 AD 的候选药物得到改善。