Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA.
Otto-von-Guericke University, Universitaetsplatz 2, 39106, Magdeburg, Saxony-Anhalt, Germany.
Int J Comput Assist Radiol Surg. 2018 Jun;13(6):815-826. doi: 10.1007/s11548-018-1744-4. Epub 2018 Apr 4.
Thermotherapy is a clinical procedure which delivers thermal energy to a target, and it has been applied for various medical treatments. Temperature monitoring during thermotherapy is important to achieve precise and reproducible results. Medical ultrasound can be used for thermal monitoring and is an attractive medical imaging modality due to its advantages including non-ionizing radiation, cost-effectiveness and portability. We propose an ultrasound thermal monitoring method using a speed-of-sound tomographic approach coupled with a biophysical heat diffusion model.
We implement an ultrasound thermometry approach using an external ultrasound source. We reconstruct the speed-of-sound images using time-of-flight information from the external ultrasound source and convert the speed-of-sound information into temperature by using the a priori knowledge brought by a biophysical heat diffusion model.
Customized treatment shapes can be created using switching channels of radio frequency bipolar needle electrodes. Simulations of various ablation lesion shapes in the temperature range of 21-59 [Formula: see text]C are performed to study the feasibility of the proposed method. We also evaluated our method with ex vivo porcine liver experiments, in which we generated temperature images between 22 and 45 [Formula: see text]C.
In this paper, we present a proof of concept showing the feasibility of our ultrasound thermal monitoring method. The proposed method could be applied to various thermotherapy procedures by only adding an ultrasound source.
热疗是一种将热能传递到目标的临床程序,已应用于各种医疗治疗。热疗过程中的温度监测对于实现精确和可重复的结果非常重要。医学超声可用于热监测,由于其具有非电离辐射、成本效益和便携性等优点,是一种有吸引力的医学成像方式。我们提出了一种使用速度声层析方法结合生物物理热扩散模型的超声热监测方法。
我们使用外部超声源实现超声测温方法。我们使用外部超声源的飞行时间信息重建声速图像,并使用生物物理热扩散模型的先验知识将声速信息转换为温度。
可以使用射频双极针电极的切换通道创建定制的治疗形状。在 21-59°C 的温度范围内模拟各种消融病变形状,以研究所提出方法的可行性。我们还使用离体猪肝实验评估了我们的方法,其中我们在 22 到 45°C 之间生成了温度图像。
本文提出了一个概念验证,展示了我们的超声热监测方法的可行性。通过仅添加一个超声源,该方法可应用于各种热疗程序。