Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China.
Department of Biochemistry and Molecular Biology, College of Sciences, Jiang Xi Agricultural University, Nanchang 330045, China.
Ecotoxicol Environ Saf. 2018 Aug 15;157:159-168. doi: 10.1016/j.ecoenv.2018.03.081. Epub 2018 Apr 2.
RNA helicases play crucial roles in RNA splicing, transport, editing and degradation, protein translation initiation and siRNA-mediated gene silencing. However, knowledge about their functionality in rapeseed (Brassica napus) is rare. In the study, we identified and annotated 271 RNA helicase genes from B. napus using bioinformatics and high-throughput RNA-sequencing (RNA-seq). Three subfamilies DEAD-box, DEAH-box, or DExD/H-box have been identified. One hundred and ninety-five RNA helicases were confirmed by RNA-seq and 49 were identified to differentially respond to cadmium (Cd) stress (> 1.5 fold change, p < 0.05). As an example, we functionally specified BnaA04g26450D encoding a BnRH24 under Cd exposure. BnRH24 is a constitutive gene expressing throughout the life span. Using our previously generated degradome datasets, we found that BnRH24 can be cleaved by miR158, suggesting that BnRH24 is a target of miR158 in B. napus. The mature miR158 was induced, while BnRH24 was repressed in B. napus under Cd stress. The contrasting expression pattern of B. napus miR158 and BnRH24 under the normal and Cd would support the post-transcriptional regulation of BnRH24 by miR158. Ectopic expression of BnRH24 in Arabidopsis revealed that the transgenic lines showed more sensitivity to Cd toxicity by reducing root elongation, fresh mass production, chlorophyll accumulation and increasing oxidative products such as O, HO and thiobarbituric acid reactive substances (TBARS), indicating that the controlling the level of BnRH24 by miR158 may be required for Cd tolerance in plants.
RNA 解旋酶在 RNA 剪接、运输、编辑和降解、蛋白质翻译起始以及 siRNA 介导的基因沉默中发挥着关键作用。然而,关于它们在油菜(Brassica napus)中的功能的知识却很少。在这项研究中,我们使用生物信息学和高通量 RNA 测序(RNA-seq)从油菜中鉴定和注释了 271 个 RNA 解旋酶基因。鉴定出三个亚家族 DEAD-box、DEAH-box 或 DExD/H-box。通过 RNA-seq 验证了 195 个 RNA 解旋酶,鉴定了 49 个对镉(Cd)胁迫有差异响应的 RNA 解旋酶(差异倍数>1.5,p<0.05)。例如,我们对 Cd 暴露下编码 BnRH24 的 BnaA04g26450D 进行了功能指定。BnRH24 是一个组成型基因,在整个生命周期中都有表达。利用我们之前生成的降解组数据集,我们发现 BnRH24 可以被 miR158 切割,这表明 BnRH24 是油菜中 miR158 的靶标。在油菜中,miR158 在 Cd 胁迫下被诱导,而 BnRH24 被抑制。油菜 miR158 和 BnRH24 在正常和 Cd 胁迫下的表达模式相反,支持 miR158 对 BnRH24 的转录后调控。BnRH24 在拟南芥中的异位表达表明,转基因株系通过抑制根伸长、鲜重生产、叶绿素积累和增加氧化产物(如 O、HO 和硫代巴比妥酸反应物质(TBARS))对 Cd 毒性更为敏感,这表明 miR158 对 BnRH24 水平的控制可能是植物耐 Cd 的必需条件。