Suppr超能文献

对钯(0)催化的亚甲基环丙烷分子间和分子内氢胺化反应的机理见解:一项计算研究。

Mechanistic insights into Pd(0)-catalyzed intermolecular and intramolecular hydroamination of methylenecyclopropanes: a computational study.

作者信息

Liu Yuan, Ogunlana Abosede Adejoke, Bao Xiaoguang

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.

出版信息

Dalton Trans. 2018 Apr 24;47(16):5660-5669. doi: 10.1039/c8dt00131f.

Abstract

The mechanisms of transition metal-catalyzed methylenecyclopropanes (MCPs)-involved reactions are rather complicated due to the diverse pathways for the activation of MCPs. Herein, computational studies were carried out to investigate the detailed mechanisms of Pd(0)-catalyzed intermolecular and intramolecular hydroamination of MCPs. The initial activation of the three-membered ring of MCPs readily occurs via the insertion of Pd(0) into the distal C-C bond, leading to a metallacyclobutane intermediate. The commonly proposed oxidative addition of amine/amide nucleophile (Nu-H) onto the Pd(0) center to afford a hydrido-Pd(ii) complex, however, is less favorable in comparison with the Pd(0)-mediated cleavage of the distal C-C bond of MCPs. Subsequently, for the Pd(0)-catalyzed intermolecular hydroamination of 1,1-diphenyl MCP with 2-pyrrolidone, it is more favorable for the C1 of the metallacyclobutane intermediate to undergo protonation to yield a π-allylpalladium intermediate, from which the final allylamine product is afforded via reductive elimination. For the Pd(0)-catalyzed intramolecular hydroamination of aniline-tethered MCP, the intramolecular nucleophilic attack of the amine moiety to C3/C4 of the corresponding metallacyclobutane intermediate is preferable to generate a cyclic intermediate. Subsequent proton transfer steps could occur to complete the hydroamination reaction. The different pKa values of the N-H bonds of amide/amine are mainly responsible for the mechanistic difference in the Pd(0)-catalyzed hydroamination of MCPs.

摘要

由于亚甲基环丙烷(MCPs)活化途径的多样性,过渡金属催化的涉及MCPs的反应机制相当复杂。在此,进行了计算研究以探究Pd(0)催化的MCPs分子间和分子内氢胺化反应的详细机制。MCPs三元环的初始活化很容易通过Pd(0)插入远端C-C键发生,生成金属环丁烷中间体。然而,通常提出的胺/酰胺亲核试剂(Nu-H)在Pd(0)中心上的氧化加成以得到氢化钯(II)配合物,与Pd(0)介导的MCPs远端C-C键的裂解相比不太有利。随后,对于Pd(0)催化的1,1-二苯基MCP与2-吡咯烷酮的分子间氢胺化反应,金属环丁烷中间体的C1进行质子化以生成π-烯丙基钯中间体更有利,最终的烯丙胺产物通过还原消除得到。对于Pd(0)催化的苯胺连接的MCP的分子内氢胺化反应,胺部分对相应金属环丁烷中间体的C3/C4的分子内亲核攻击更有利于生成环状中间体。随后可能发生质子转移步骤以完成氢胺化反应。酰胺/胺的N-H键的不同pKa值是Pd(0)催化的MCPs氢胺化反应机制差异的主要原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验